
 
 
 
 
 

EFFECT OF THE POROUS MEDIA TRANSVERSE ISOTROPY OND SOUND 
TRANSMISSION PROPERTIES OF DOUBLE WALL SYSTEMS 

 
PACS REFERENCE: 43.55.Rg 
 
TRAN-VAN J.(1,2); OLNY X.(2) ;and SGARD F (2). 
(1) Saint-Gobain Isover France 
"Les Miroirs" 
92096 La Défense cedex 
France 
+(33) 1 47 62 42 78 
+(33) 1 47 62 42 15 
jtran-van@saint-gobain.com 
 
(2) Laboratoire des Sciences de l'Habitat, Département Génie Civil et Bâtiment, URA CNRS 
1652, Ecole Nationale des Travaux Publics de l'Etat 
rue Maurice Audin 
69518 Vaulx-en-Velin Cedex 
+(33) 4 72 04 70 31 
+(33) 4 72 04 70 41 
olny@entpe.fr, sgard@entpe.fr 
 
 
 
ABSTRACT: Most of models used to predict the sound insulation performance of multilayered 
structures, including a porous material, assumed it to be isotropic. 
The aim of this paper is to study the transverse anisotropy of porous media like glass wool on 
transmission loss performance. The porous material is modeled using Allard's1 equations. A 
numerical model based on a transfer matrix approach is developed to predict the transmission 
loss of a double wall made up of two elastic plates separated by a cavity filled with mineral wool. 
Comparison between anisotropic and isotropic approach are carried out in order to assess the 
importance of anisotropy on the acoustics characteristics of the system. 
 
 
 
INTRODUCTION 
 
 
 Anisotropic porous media, such as rock wools or glass wools, are commonly used in 
building engineering for their acoustic properties. They can be utilized in sound insulation 
systems (mass-spring-mass systems) or as absorbing panels. Most of these materials present a 
specific structure composed of fibers plans superposed one to each other. These anisotropic 
structures are called transverse isotropy. So, these media present two characteristic 
dimensions, one planar and the other normal to the fibers planes. 
The aim of this paper is to study the influence of this anisotropy on the acoustical performances 
of classical structures. In this paper, the porous material is assumed to behave either as a rigid 
frame or limp material, so that only one compression wave is taken into account. The porous 
material is then equivalent to a homogenous media characterized by an equivalent dynamic 
density tensor and a dynamic bulk modulus. Incidence of transverse isotropy on sound 
absorption is computed using Allard's1 equations. To determine the transverse isotropy 
influence over sound transmission, the dynamical parameters are introduced in a transfer matrix 
method to obtain the transmission loss of a system including a layer of porous material between 
two elastic plates. 
 



 
 
1. THEORY 
 
 

1.1. Transfer matrix method 
 

 
fig.1: multilayered structure 

 
A multilayered structure as those represented by fig1. is considered. The transfer matrix 
method, used by various authors (Allard1, Brouard et al2) and well presented by Ghinet3, allows 
connecting incident boundary conditions VI to those of the end of the multilayer structure VE. 
Each layer Li is described by his own transfer matrix Ti that satisfies the relation : 

Vi=Ti.Vi'  (1)  
Where Vi and Vi’ are vectors giving physical parameters (velocity, pressure, stress…) on the 
faces I and I’  of the considered layer. 
The transfer matrix of a given layer depends on the physical and acoustical properties of the 
layer and of his thickness. At each interface, the continuities equations between the vector Vi' 
and Vi+1 can be represented in a matricial form with two matrices according to the relation:  

Ii-1.V(i-1)'=Ii.Vi  (2) 
Then, the whole structure is represented by a global transfer matrix T which form is: 
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In order to obtain the absorption coefficient or the transmission loss, two specific sets of 
boundary conditions are selected. For the absorption, the multilayer is considered backed by a 
rigid wall. For the transmission loss, the propagation is a semi-infinite domain of fluid (air). If 
matrices for elastic solids and homogeneous porous media exist, a special one should be 
developed for the transverse isotropic media 
 
 

1.2. Dynamic characteristics for transverse isotropic media 
 
First of all the porous media will be considered in this study with a motionless skeleton. By this 
way, only the compression wave in the fluid phase of the material is considered. The acoustical 
wave propagation is defined by the relation  
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Then, the porous media, from the macroscopic point of view is characterized by the dynamic 

compressibility eqK of the fluid phase and the dynamic permeability tensor eq Π  . This tensor 

which form is 
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depends of the dynamic compressibility eq iρ − . According to the Johnson's et al's4 equations, 

the dynamic density of the equivalent media is given by: 
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The dynamic density depends on the properties of the saturating fluid: the kinematic viscosity η 

and the density 
0ρ ; and on macroscopic intrinsic geometrical parameters: the open porosity φ , 

and the vectorial values of the static airflow resistivity iσ , the tortuosity iα∞ , and the viscous 
characteristic lengths 

iΛ . 

 
When the motion of the rigid frame cannot be neglected, a more complex model describing 
poro-elastic media like the Biot-Allard’s1 one should be used. However for limp materials (when 
the solid frame has no bulk stiffness), Equation (4) still hold using the equivalent density given 
by: 
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Where pρ  is the apparent density of the porous media. 

 
The dynamic compressibility has been detailed by Champoux5 . For materials like glass wools, 
the refined model of Lafarge et al's6 gives improved results and is used to calculate the dynamic 
compressibility. 
 
 

1.3. Dynamic characteristics for transverse isotropic media 
 
For a fluid, the transfer matrix is given by: 
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Considering Allard's1 relation for transverse isotropy, and including the dynamic parameters 
presented before, the impedance and the wave number in the case of oblique incidence are 
given by: 
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2. NUMERICAL RESULTS 
 

2.1. Parameters of the porous media 
 
The acoustic parameters  of the porous medium chosen for the numerical calculus, have been 
measured on a standard glass wool of medium density (25 kgm-3)8. The ratio between the 
planar and the normal static air-flow resistivity is relatively low (0.74) compared to the ratio of 
0.5 observed for glass wools by Allard et al7. 
 

 σ  (Nm-4s) φ  α∞  Λ (µm) 'Λ (µm) '
0k (µm) 

z-direction 18600 1.08 46 
x-direction 13800 1.00 54 

x-direction, 0.5 ratio 9300 
0.995 

1.00 65 
96 0.0029 

Table 1: Parameters of the material, normal to the fibre plane (z-direction) and parallel to the fiber plane (x-
direction) estimated from standards parameters of common glass wool. The last row present values estimated 
from the z direction considering a ration of 0.5 for static airflow resistivity 



 
 

2.2. Sound absorption coefficient 
 
To estimate transverse isotropy incidence upon sound absorption of the material at oblique 
incidence, Allard's1 model is used to obtain the impedance of the material. The media 
considered has a thickness of e, and the oblique incidence has an angle θ with the normal of 
the material's surface. The impedance is given by the following relation: 

3
3

. cot ( )Z
eqZ eq

k
Z j K an k e

k
ρ= −   (10) 

 
fig. 2: Configuration to calculate sound absorption coefficient 

 
On figure 3, absorption coefficient presents different values, for the limp model, between the 
isotropic and the transverse isotropic case only at a high angle of incidence as noticed by 
Allard1 in the case of rigid frame. 
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figure. 3: absorption coefficient for incidence of 30° and 85°, limp model. 
(continue line): isotropic case, (dot line) transverse isotropic case. 

 
Influence of the limp model in the case of transverse isotropy , presented in figure 4, appears at 
low frequencies for low incidence angle, giving a higher absorption coefficient than the rigid 
model. The effect changes for high incidence angle, absorption becoming less under 800 Hz 
than values of the rigid model. 
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figure. 4: absorption coefficient for incidence of 30° and 85°, resistivity of 13800 Nm-4s. 
(continue line): rigid model, (dot line) limp model. 
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2.3. Transmission loss factor 
 
Transmission loss factor is calculated using the transfer matrix method as detailed before. The 
studied configuration is presented in fig 5. a lightweight wall composed of two gypsum plates 
separated by a layer of glass wool. The porous material in the cavity is separated from the plate 
by a thin air layer (1mm). The transmission loss is determined for incidence angles of 30 and 85 
degrees. 

 
fig. 5: structure of the multilayered system 

 
On figures 6 and 7 appear results of transmission loss for the rigid and limp model for the both 
cases of isotropy and transverse isotropy. For the two cases (limp and rigid), transverse isotropy 
cause no alteration of the transmission loss factor. 
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Fig. 6 : transmission loss for incidence of 30° and 85°, rigid model. 
(continue line): isotropic case, (dot line) transverse isotropic case. 
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Fig. 7 : transmission loss for incidence of 30° and 85°, limp model. 
(continue line): isotropic case, (dot line) transverse isotropic case. 

 
Figure 8 compares the effects of the rigid and the limp model on transmission loss factor. 
Generally, in the limp case, transmission loss becomes reduced essentially under the 
resonance frequency of the mass spring mass system. At high frequencies, the lost on the 
transmission loss isn’t as important that the one in low frequency range. 
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Fig. 8 : transmission loss for incidence of 30° and 85°,resistivity of 13800 Nm-4s. 
(continue line): rigid model, (dot line) limp model. 

 
 
 
 
3. CONCLUSION  
 
Calculation shows that transverse isotropy, of the fluid phase due to the geometrical structure of 
the porous media, characterizing some porous material used for noise control purposes, has an 
influence on acoustic absorption only for high incidence angle compared to the isotropic model. 
No effects over transmission loss are observed for the mass-spring-mass system studied here. 
However, the limp model present important reduction of the transmission loss under the 
resonance frequency of the system. Except for materials presenting very strong transverse 
isotropic properties, the isotropic modeling stays efficient. Measurement should confirm these 
results. 
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