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ABSTRACT 
 
The effects of the diffraction of sound waves by a randomly rough hard surface are modelled by an 
effective impedance. Measurements over surfaces containing randomly-spaced semi-cylinders and 
BEM predictions of Excess Attenuation spectra for random distributions are fitted for effective 
impedance roots by means of the classical theory for a point source above an impedance plane. 
Relations between effective impedance and frequency are deduced by usingTwersky’s theory for 
small random semi-cylinders and by polynomial fitting. 
 
INTRODUCTION 
 
The objective of this work is to develop models of impedance as a function of frequency for various 
rough-hard surfaces corresponding to different sea states as part of research on sonic boom 
propagation. The main effect of surface impedance on sonic boom propagation is in the shadow 
zone. Less important effects are also in the primary carpet, where the incidence angle varies quite 
significantly. This work is focused on the grazing angle of the series of creeping waves diffracting 
into the shadow zone. The specific impedance of sea water is greater than that of air by four orders 
of magnitude, therefore the sea surface is considered to be acoustically hard for atmospheric sound 
propagation. The roughness will be considered static and the effect of the diffraction of sound 
waves by roughness is modelled as an effective admittance although, in reality, the scattered field 
is not constant because the boundary is continously in movement due to winds and currents.  
 
THE ACOUSTIC MODELS 
 
The Boundary Element Model (BEM) 
The method used in this work was developed by Chandler-Wilde1,2 who solved the Helmholtz 
equation for the pressure at the receiver with the boundary integral equation:  
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function for the Helmholtz equation in a half plane with impedance boundary condition and can be 
calculated analytically. The boundary integral equation is solved approximately by discretizing the 
surface and assuming a constant pressure value in each boundary element of the ground surface. 
A flat or profiled ground surface can be modelled as the discretization points can be chosen out of 
the horizontal plane. Source, receiver and specular-reflection points are assumed to be in a vertical 
plane perpendicular to the roughness axis, and a line integral is solved. The BEM is used to predict 
sound levels over rough surfaces by including the roughness profile in the form of node coordinates 
input to the program. In all cases modelled in this work, the hard surfaces are assumed to have an 
admittance β=0. The BEM has proved to be an accurate model when compared to results from past 



experiments involving mixed impedance3 and rough ground4. The BEM is considered in this work 
as the reference to which the Twersky theory is compared.  
 
Twersky’s Theory 
Twersky has developed a boss model5,6,7,8 to describe coherent reflection from a hard surface 
containing semi-cylindrical roughnesses in which the contributions of the scatterers are summed to 
obtained the total scattered field. Sparse and closely-packed distributions of bosses have been 
considered and interaction between neighbouring scatterers has been included. His results lead to 
a real and imaginary part of the effective admittance of the rough hard surface which may be 
attributed respectively to incoherent and coherent scattering. The rough surface admittance 
depends on the incident wave number, the angle of incidence, the raised cross sectional roughness 
area per unit length, the dipole coupling between neighbour semi-cylindrical scatterer, and a 
packing factor introduced for random distributions. The authors have reported some success in the 
use of this model in the case of hard and soft roughness profiles 4,9. Twersky’s effective admittance 
model is subject to the approximation ka<1, where a is the radius of a cylindrical roughness. In this 
work, the number of roughness per unit length n, the semi-width of the semi-elliptical roughness e, 
the height of the roughness he, the  minimum center-to-center separation distance between two 
roughness minb and the source height hs are varied to obtain the best least square fit with the 
effective impedance obtained from BEM predictions or from measured data. 
 
EXCESS ATTENUATION AND EFFECTIVE IMPEDANCE  
 
Computation Method for Excess Attenuation 
Excess attenuation is the attenuation of the sound wave in excess of that from spherical spreading 
and is computed from: 
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The total pressure P for the BEM and the model based on Twersky’s theory are computed from 
equations (1) and (4) respectively where R1 and R2 are the direct and reflected path distances. The 
model based on Twersky’s theory incorporates the Weyl van der Pol spherical wave reflection 
coefficient Q.  
 
Effective Impedance from Measured or Predicted Excess Attenuation 

The Admittance Root Equation 
The excess attenuation (EA) computed with the BEM from equations (1), (2) and (3) or observed in 
measurements corresponds to the attenuation due to the interference between the direct wave, the 
rough surface reflected wave and a possible surface wave. To estimate the effective impedance of 
such a rough surface it is considered that the complex EA measured or predicted by the BEM is 
produced by a flat surface of effective admittance βef. This impedance is found by solving for the 
admittance in the Weyl van der Pol spherical wave reflection coefficient. The problem becomes a 
βef  – root search using the following equation at each frequency of interest  
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where F(w) is the sphericity factor. This equation does not have a readily available analytical 
solution, therefore, numerical methods have to be sought. Various numerical methods for finding 
the roots of complex variable equations have been implemented. The Newton Raphson method 
produces only one root per frequency point and has been used10 previously in effective impedance 



estimations. The second method uses an IMSL library routine based on Müller’s technique and is 
limited practically to two roots for each frequency point. The weaknesses of these two methods are 
their potential lack of convergence toward a root for some frequency points, and the fact that they 
might miss important roots. The lack of convergence was an obstacle during several test cases, but 
an important factor in this work was the need to insure that no physically meaningful root was 
missed in the search. Therefore, a third more thorough root search method based on winding 
number integral has been developed. 
  

The Winding Number Integral Method  
This method is based on the winding number integral described by Brazier–Smith et al.11 who apply 
it to the determination of roots from dispersion equations. If one seeks the roots of a function F, 
analytic everywhere inside a closed contour Γ,  the difference between the number of zeros nZ and 
the number of poles nP of F inside Γ can be computed from the winding integral 
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where the complex integral can be evaluated by the winding number of  F(Γ) around the origin in an 
anticlockwise path. The winding number is noted by nZ  - nP = Wnd(F(Γ),0). Once the image of the 
closed contour Γ is computed by the function F the path can be divided into a series of chords and 
each cord  is tested to check if it takes Ln(F) across the negative real axis. If it crosses from above, 
the winding number is increased by one and if from below, reduced by one. When the number of 
zeros inside a contour is established, the roots need to be identified. This work implements a 
search for two roots at a time in a contour, therefore only the first two moments of the winding 
integral are required. The expression of a moment In of order n is given by: 
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where zz
i is the location of the ith zero and where zp

j is the location of the jth pole. When the winding 
number is equal to one, the single zero is given by I1 and when the winding number is equal to 2. 
The two zeros are determined by the roots of the quadratic equation 

z2-I1z+0.5(I1
2-I2)=0     (8) 

The integral shown in equation (7) is computed numerically with a Riemann sum. Great care has to 
be exercised when computing the function Ln(F) because Ln is not analytical across the negative 
real axis and the argument F of Ln might cross this branch cut. This potential discontinuity problem 
with Ln(F(z)) is solved using an analytical continuation of Ln across the branch cut. Mathematically, 
this means that instead of considering Ln as a simple function, it is viewed as a family of Ln 
functions each defined on a separate Riemanian sheet. This allows the continuity of the Ln(F(z)) 
family function at each branch cut, a branch cut being viewed as a seem of two successive 
Riemannian sheets. Therefore, when Arg(F(z))=θ increases n times beyond π, Arg(F(z))=θ  + 2nπ , 
and one uses Ln(F(Z)) = Ln|F(z)| + iArg{F(z)} + 2nπi. When applied to the admittance root equation 
(5), the method uses a series of square contours Γ in which the roots are searched. If more than 2 
roots are detected with the winding number count inside each square contour Γ, a smaller contour 
is chosen. 
 
EXCESS ATTENUATION AND EFFECTIVE IMPEDANCE RESULTS FOR RANDOM 
DISTRIBUTIONS OF SEMI-CYLINDERS  
 
In the following, d is the source-receiver separation distance, h is the source and receiver heights, 
hef f is the effective source and receiver height, l is the semi-cylinder diameter and Z is the 
impedance. 
 
Excess Attenuation Results for Small Hard Randomly Spaced Semi-Cylinders  
The experimental procedure has been described in detail in other work4 and only results are 
reported here. The measurements and BEM predictions used a 20 hard semi-cylinder roughness 
profile with l=0.0135m, d=1m and h=0.1m. Since the measured data and BEM predictions of 
excess attenuation spectra are rather sensitive to the roughness condition at the point of specular 
reflection between source and receiver, data and predictions are averaged over several random 
distributions. The averaged BEM prediction (Fig. 1.b) compares favourably with averaged 



measured data (Fig. 1.a) for the excess attenuation spectra. It should be noted that the measured 
data are unreliable below 300 Hz.  
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Fig. 1.- Measured (a) and BEM-predicted (b) excess attenuation spectra above a small semi-
cylindrical roughness profile  
 
Effective Impedance for Small Hard Randomly Spaced Semi-Cylinders 
The winding number integral method results in only unphysical negative real impedance roots to 
equation (5) for some frequency points when using the nominal ground plane height with BEM 
predictions. The results are improved when the effective impedance is computed with a ground 
plane effective height set to the top of the random roughness (hef =0.093m). This step has been 
suggested before12,13 and is applied in all effective impedance calculations from BEM predictions. 
Subsequently, any negative Re(Z) is set to zero. The latter step produces very little discrepancy 
between the nominal and deduced EA. The effective impedances deduced from measured data 
and BEM predictions are shown in Figure 2.a and 2.b. respectively. The predictions resulting from a 
5-parameter least-square fit of Twersky’s theory are shown as the thick-dashed and thick-solid line. 
A polynomial fit áf -1 is shown also as the thin-dashed and thin-solid line. 
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Fig. 2.-  Effective impedance from measured (a) and BEM-predicted (b) excess attenuation above a 
small semi-cylindrical roughness profile 



Excess Attenuation Results for Larger Randomly Spaced Semi-Cylinders  
The measurements and BEM predictions are for a surface with a twelve hard semi-cylinder 
roughness profile with l=0.04m, d=1m and h=0.1m. The following graphs compare very favorably 
the BEM EA with measured data  
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Fig. 3.- Measured (a) and BEM-predicted (b) excess attenuation spectra above a large semi-
cylindrical roughness profile  
 
Effective Impedance for Larger Randomly Spaced Semi-Cylinders 
The effective impedance computed from the measured and BEM Excess Attenuation data are 
shown in figures 4.a and 4.b respectively. The results of a 5-parameter least-square fit using 
Twersky’s theory is shown as the thick-dashed and thick-solid line. A similar polynomial fit áf -1 is 
shown also as the thin-dashed and thin-solid line. 
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Fig. 4.-  Effective impedance from measured (a) and BEM-predicted (b) excess attenuation above a 
large semi-cylindrical roughness profile 
 
The values of the Twersky least square fit parameters found for the two roughness sizes and from 
the BEM prediction and measured data are summarized in Table 1.  



 n (1/m) e (m) he (m) minb (m) hs (m) 
BEM small cyl. 5 0.071 0.005 0.202 0.1 
BEM large cyl. 1 0.071 0.1 0.142 0.1 
Meas. small cyl. 3 0.137 0.005 0.336 0.1 
Meas. large cyl. 1 0.137 0.1 0.274 0.1 

Table 1 – Twersky’s effective impedance least square fit parameters 
 
The values of the polynomial fit coefficient for all cases studied are summarized in Table 2. As 
example of the notation, the column Re(Zm)s shows results for the real effective impedance 
obtained from measurements in the case of small cylinders. 

 Re(Zm)s Im( Zm)s Re(Zm)l Im( Zm)l Re(ZB)s Im(ZB)s Re(ZB)l Im(ZB)l 
á 4639 6574 6672 479 9471 38276 5840 4964 

Table 2 – Coefficient of the effective impedance polynomial fit 
 
CONCLUSIONS 
 
The effective impedances of randomly rough surfaces have been deduced from complex excess 
attenuation obtained from either BEM predictions or measurements by finding the impedance roots 
of the Weyl van der Pol expression. These effective impedances can be used in a Weyl van der Pol 
expression that models a flat ground to reproduce the measured or BEM predicted excess 
attenuation. Satisfactory agreement is found between measured data and BEM predictions of 
Excess Attenuation using averaged data sets. It is found for BEM simulations that the effective 
impedance plane has to be raised to obtain physically meaningfull values of effective impedance 
real part. An analytical technique based on a boss theory from Twersky, where the contributions 
from randomly spaced semi-cylindrical or elliptical rough scatterers are summed to obtained the 
total scattered field, has been used also to fit the effective impedance from measurements and 
BEM predictions. The agreement between effective impedance from averaged measurements, from 
averaged BEM predictions and from Twersky’s fit is better for the smaller cylinders. This is 
consistent with the small ka approximation implicit in Twersky’s theory.  
 
BIBLIOGRAPHICAL REFERENCES 
                                                 
1  Chandler-Wilde S. N. and  Hothersall D. C. “Efficient calculation of the green function for acoustic 
propagation above a homogeneous impedance plane “, J. Sound and Vib., 180,  705-724 (1995).  
2 Chandler-Wilde S. N. and  Hothersall D. C., “A uniformly valid far field asymptotic expansion of the 
green function for two-dimensional propagation above a homogeneous impedance plane” “, J. 
Sound and Vib., 182,  665-675 (1995) 
3 Boulanger P., Attenborough K., Waters-Fuller T., and Li K. M. “Models and Measurements of 
Sound Propagation from a Point Source over Mixed Impedance Ground”. J. Acoust. Soc. Am. 102, 
1432-1442 (1997). 
4 Boulanger P, Attenborough K., Taherzadeh S., Waters-Fuller T., and Li K. M., 
 “Ground Effect Over Hard Rough Surfaces”. J. Acoust. Soc. Am. 104, 1474-1482 (1998). 
5 V. Twersky, “Scattering and reflection by elliptically striated surfaces” J. Acoust. Soc. Am. 40, 883-
895 (1966). 
6 V. Twersky, “Multiple scattering of sound by correlated monolayers” J. Acoust. Soc. Am. 73, 68-84 
(1983). 
7 V. Twersky, “Reflection and scattering of sound by correlated rough surfaces” J. Acoust. Soc. Am. 
73, 85-94 (1983). 
8 R. J. Lucas and V. Twersky, “Coherent response to a point source irradiating a rough plane” J. 
Acoust. Soc. Am. 76, 1847-1863 (1984). 
9 Attenborough K. and Waters-Fuller T. , “Effective impedance of rough porous surfaces” J. Acoust. 
Soc. Am. 108, 949-956 (2000). 
10 Taherzadeh S. and Attenborough K., “Deduction of ground impedance from measurements of 
excess attenuation spectra” ” J. Acoust. Soc. Am. 105, 2039-2042 (1999). 
11 Brazier –Smith P. R. and Scott J. F. M., “On the determination of the roots of dispersion 
equations by use of winding number integrals”, J. Sound Vib. 145, 503-510 (1991). 
12 Chambers J. P., Sabatier J. M. and Raspet R., “Grazing Incidence propagation over a soft rough 
surface”, J. Acoust. Soc. Am. 102, 55-59 (1997). 
13 Allard J.F., Kelders L. and Lauriks W., “Ultrasonic surface waves above a doubly periodic 
grating”, J. Acoust. Soc. Am. 105, 2528-2531 (1999). 


