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ABSTRACT. 
 
 
 In this work, the possibility to use a technique based on the analysis of thickness 
resonances of air-surrounded aerogel plates at ultrasonic frequencies to obtain its viscoelastic 
properties is investigated. These resonances were excited and sensed by airborne ultrasonic 
waves. To this purpose, specially designed air-coupled, high-sensitivity and broad-band 
piezoelectric transducers were used. Precise and simultaneous measurements of velocity and 
attenuation of longitudinal and shear waves at different frequencies as well as aerogel density 
were obtained. It allowed to afford for the first time, a full characterisation of the viscoeleastic 
properties of these materials at ultrasonic frequencies. 
 
 
 
INTRODUCTION. 
 
 
 Aerogels are among the most amazing particulate porous solids. They exhibit 
unexpected properties: thermal, optical and acoustics. Therefore, these materials have been 
proposed for many different applications: thermal and acoustic isolation, gas sensors, 
capacitors, acoustics delay lines, and as acoustic impedance matching layers for air-coupled 
piezoelectric transducers. Ultrasonics methods have been used to study their properties; while 
methods to determine ultrasonic longitudinal velocities are well established, attenuation data are 
limited. Attenuation was measured by Debye-Sears diffraction for the frequency range of 0.8-8 
MHz.1 At lower frequencies (20-200 kHz) a reverberation method was used.2 There is a lack of 
experimental results concerning the attenuation of longitudinal waves for the frequency range 
0.2-1 MHz and the velocity of shear waves in the aerogel. In addition, to the author’s 
knwoledge, there is nothing at all about attenuation of shear waves. 

 
It is the purpose of this work to apply an air-coupled ultrasonic spectroscopy technique 

to simultaneously measure sample density and velocity and attenuation of longitudinal and 
shear ultrasonic waves in aerogel plates. This is possible thanks to the recent developments of 
air-coupled piezoelectric transducers make possible to produce high-sensitivity and broad-band 
transducers operating in the frequency range of 0.3-2 MHz.3, 4, 5 From these results, we 
achieved a full characterisation of the viscoelastic properties of an aerogel, i.e. to obtain 
complex-valued and frequency-dependent data for all the elastic constants.  



 
 

MATERIALS. 
 
 

The aerogel sample used for this work is a slab (2.4 cm diameter and 0.3 cm height) 
provided by the Institùt de Ciencia des Materials de Barcelona (CSIC). Details about 
manufacturing process are given in Ref. 6. Before the measurements the sample was placed in 
a vacuum chamber and heated to 100 ºC to remove any absorbed moisture  

 
 
 

THEORETICAL BACKGROUND. 
 
 

Generally speaking the technique is as follows: an aerogel plate embedded in a 
continuum medium (air) is insonificated by a broad-band airborne ultrasonic pulse which 
frequency spectrum comprises several eigenfrequencies of the plate.7 Eigenvibrations excited 
by the incident wave are recorded and analyzed. There are two different theoretical approaches 
to this problem. The first one is to impose boundary conditions to stress and strains fields at the 
surfaces of the plate and solve the system of equations for field amplitudes.8 The second one is 
to apply the quantum-mechanical theory of resonance scattering.7 This later procedure 
calculates the contribution of each resonance to the transmission and reflection coefficients. 
Exact results are provided only on the vicinity of the resonances but it gives a clear insight on 
the behaviour of the plate specially in the case of overlapping resonances. In this work the first 
procedure has been used since overlapping resonances can be discerned. The viscoelastic 
nature of the plate is introduced into the theoretical analysis by means of the correspondence 
principle (i.e. introducing complex and frequency dependent elastic constants).9 

 
 
Theoretical modelling of the problem of the transmission of ultrasonic waves through an 

air surrounded aerogel plate is carried out considering incident plane longitudinal waves. 
Displacement vector potentials can be written in the three space regions (m) denoted as (1: and 
3: air, 2: aerogel plate) 
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where k  is the wavenumber in each region (m) of the space, the subscripts l and t denote 

longitudinal and shear wave respectively, θ is the angle of incidence of the acoustic ratiation on 
the aerogel plate, and t is the thickness of the membrane. Faces of the aerogel are located at 

tzz == and0 .Displacement vector u is calculated from the scalar potential ϕ by:  
 

mmm rotgradu ϕφ +=         (2) 
 
 
Stress (σ) is calculated from the constitutive equations in each region of the space. The 

aerogel plate can be considered homogeneous and isotropic: 
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where λ and µ are the Lamè coefficients of the aerogel plate. Stress and displacement must 

be continuous across membrane surfaces (z =0, z = t). These boundary conditions along with 



Eqs.(1)-(3) provide a linear system of four equations that can be analitically solved for the 
coefficients i

mϕ . From these coefficients, displacements, stress, and energy flux in any point of 
the space can be derived. The transmission coefficient (T) is defined as the ratio of transmitted 
to incident energy fluxes. For normal incidence (θ=0) a simple analytical expresion for T is 
obtained: 
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where t is the thickness of the aerogel, lllll icikk αωα −=−=
~

, where lk  is the 

wave vector, lα  the longitudinal wave attenuation, lc  the longitudinal phase-velocity, and ω is 
the angular frequency. Z is the specific acoustic impedance. On the contrary, no simple 
analytical expresion for T can be derived for oblique incidence. For this case, a numerical 
solution is calculated. The employed technique to characterise the aerogel is based on 
experimental measurement and theoretical calculation of the transmission coefficient of 
ultrasonic waves through the aerogel plate.  

 
 

EXPERIMENTAL SET-UP. 
 
 
For the experimental work two pairs of specially designed air-coupled piezoelectric 

transducers were used. First, the signal received through the airgap without the membrane in 
between is digitized by the oscilloscope and transferred to the computer; its frequency spectrum 
is calculated (Fast Fourier Transform FFT). Then the aerogel plate is put in between the 
transducers, first at normal incidence. The received signal through the airgap and the aerogel 
plate is again recorded and FFT calculated. Finally, the incidence angle is increased and the 
measurement repeated for several values of the angle of incidence up to 20 degrees. 
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Figure 1. Scheme of the experimental set-up. 
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The Insertion Loss (IL) for the aerogel plate is defined as ( )refsample AAIL 10log20=  

where refsample AA and  are the amplitudes of the FFT (Fast Fourier Transform) of recorded 

waves with and without the aerogel plate in between the transducers respectively. In addition, it 

can be demonstrated that in this case IL and T follow a simple relation:
21

TAA refsample = .  

 
 
Figure 1.a. shows the measured IL (dots) for normal incidence. Separation between 

resonances is almost constant and equal to 59±1 kHz. First order resonance might be located at 
59 kHz and the first peak in Fig. 1.a (354.5 kHz) should then correspond to the sixth order peak 
(n=6).  
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Figure 1. IL versus frequency. Dots: experimental measurements. Solid line: theoretical results: 
1.a. Normal incidence; 1.b. Incidence angle of : 19º  

 
 

lc , αl, and ρ are used as fitting parameters to match the theoretical calculations of IL to 
the measured values. The result for IL, so calculated, is shown in Fig 1.a (solid line). Fig. 2 
shows the obtained values of lc  and αl  at resonance. Obtained ρ  is 220±20 Kg/m3. αl  follows 
a frequency power law:  

 

( ) ,y
1ll fáfá = where y = 1.1±0.05 and )./(1016.3 5 y

1l HzmNpá −×= (2) 
 
Fig. 1.b shows the measured IL (dots) for oblique incidence (19º). Interferences due to 

the overlap of longitudinal and shear resonances are clearly appreciated. Using the values of 

llc αand  obtained before (analysis of IL for normal incidence), shear wave phase-velocity ( tc ) 

and attenuation ( tα ) were used as fitting parameters to match theoretical calculations of IL to 

experimental values. The higher accuracy for ttc αand  are obtained at frequencies were 
interferences between longitudinal and shear resonances appear. The result for IL, so 
calculated,  is shown in Fig 1.b (solid line). Obtained results for ttc αand  are shown in Fig. 2. 

For frequencies higher than 0.9 MHz the uncertainty in the determination of tα  becomes very 

high. Therefore, the error in the determination of the y exponent is also very high: y = 0.5±0.15. 
Using thinner samples and/or larger incidence angles might solve this problem. Results for tα  
can be adjusted by a power law:  

 
( ) 5.0
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Figure 2. Attenuation versus frequency of longitudinal (•) and shear (n) waves. Solid lines: 
power fitting. Velocity versus frequency of longitudinal (u) and shear (�) waves. 

 
 
Table I. Poisson coefficient and complex elastic modulus. 
 
Freq. 
(MHz) 

G (MPa) 
Shear  
Modulus 

Gδ1tan − = 
imag(G)/real(G) 

M (MPa) 
Mδ1tan − = 

imag(M)/real(M) 

E (MPa) 
Young  
Modulus 

Eδ1tan − = 
imag(E)/real(E) 

0.44 8.36+0.18i 0.0212 22.98+0.32i 0.0140 20.30+0.38i 0.0185 
0.63 8.49+0.15i 0.0179 23.01+0.28i 0.0124 20.53+0.32i 0.0158 
0.82 8.54+0.14i 0.0164 23.01+0.31i 0.0132 20.60+0.31i 0.0151 
1.0 8.54+0.14i 0.0166 23.16+0.36i 0.0155 20.62+0.33i 0.0162 
1.2 8.58+0.13i 0.0151 23.09+0.38i 0.0165 20.67+0.32i 0.0156 
 
 

Complex elastic constants and related viscoelastic parameters can now be calculated. 
Results are gathered in table I. The complex shear modulus G is obtained from ρ2~

tcG = . The 

complex elastic modulus M is defined as: M=K+4/3G ρ2~
lc≡ , where K is the bulk modulus, and 

tc~  is the complex shear wave velocity. E is the Young Modulus: ( )GKGKE += 39 , with 
real values of the same order as the ones found using microindentation.10 Poisson coefficient, 
which is difficult to obtain from other techniques, is calculated from: ( ) ( )1212 −−= rrσ , 

where 22
lt ccr = . 

 
 
A detailed analysis of data shown in table I reveals that none of the calculated elastic 

moduli follow the frequency dependence predicted by any of the simple and basic viscoelastic 
single relaxation models (Voigt and Maxwell). On the contrary, bearing in mind that attenuation 
follows a frequency power law (Eqs. 2 and 3), a possible alternative to single relaxation models 
could be a time causal model. 11, 12 

 
 
In some aspects, the behaviour of the aerogel observed here resembles that of some 

well investigated materials. These similarities permit to gain an insight into the underlying 
physics. For example, the shear modulus (G) and shear loss ( Gδtan ) exhibit a similar 
behaviour to those reported for some kind of polymers. 11, 13 For such polymers the interpretation 
usually given is based on non-local cooperative interactions of large molecules which could also 
be applied for aerogels. Another interesting feature is provided by the fact that 

fcteQ lMM ∝⇒≅≡ − αδ1tan . This relationship has also been observed, for some kind of 
aerogels, at higher and lower frequencies. 1, 2  

 
 



A similar behaviour has been found in marine sediments (water-saturated and dry 
sediments). Theoretical predictions of αl in fluid-filled porous media (as sediments) are based on 
the interaction between the fluid in the pores and the solid skeleton. This provides a 

dependence of the attenuation with the frequency that varies at  or , 212 fff depending on 
the frequency range involved.14 On the contrary, experimental measurements over a wide 
frequency range suggest a linear frequency dependence for αl. This is the object of a long 
lasting argument between experimentalists and theoreticians.14 To explain this experimental 
behavior, different sources of disipation leading to an attenuation proportional to ƒ (e.g. friction 
at the contact area between particles of the frame) were introduced into the theoretical 
modeling. The understanding of sound attenuation in aerogels may benefit from this. 

 
 
 

CONCLUSIONS. 
 
 

In conclusion, we present an experimental technique that do not require any sample 
machining to simultaneously measure velocity and attenuation of longitudinal and shear waves 
in aerogels. A fully viscoelastic characterisation of the aerogel is obtained and a deeper insight 
on aerogel basic properties is gained.  
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