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ABSTRACT 
 

The response of many structures to a force can be modelled by the response of a rod or 
a system of rods with the appropriate boundary conditions. Thus, the study of the vibrations of 
rods can allow us to understand the behaviour of that structures. A new numerical method for 
the study of the vibrations of rods is proposed in this work. With this method, called “Network 
Simulation Method”, the response of a finite thin rod with different boundary conditions can be 
obtained numerically. 
 
 
 
INTRODUCTION 
 

The longitudinal vibrations in a thin rod are produced when a external force is applied 
on it. These waves change the length and volume of the rod but not its shape [1]. If we assume 
that there is not any friction in the rod, the deformation of each element of the rod will propagate 
following the wave equation, so generating longitudinal waves in the specimen. The study of 
these longitudinal vibrations allows us to understand better the acoustic waves motion in finite 
media, and it has practical applications. For example, the use of the fundamental vibration 
frequency of a piezoelectric crystal in order to control the frequency of an electric current or to 
excite an electroacoustic transducer. Moreover, the response to an external force of structures 
made with rods or that can be modelled by rods with different boundary conditions, can be 
obtained.  
 
 In  this work we simulate the longitudinal vibrations in a thin rod using a numerical 
method which has not  been applied to the wave motion until now, named “Network  Simulation 
Method” [2]. This method is based on obtaining a network model equivalent to the physical 
process under study, and its resolution with an appropiate circuit simulation program. In our 
case, the PSPICE program [3] [4] has been used, because it can get the evolution of the 
potentials and currents of the circuit throughout time, which represent the physical variables of 
our interest. 
 



 
NETWORK MODEL FOR LONGITUDINAL VIBRATIONS IN RODS 
 
 
 In order to design the network model equivalent to the process, we have to consider 
the mathematical model of the process and obtain its local description. With this information we 
elaborate the basic cell of the network, the one which correspond with the process in a basic 
volume of the medium. The association in cascade of many of these cells represents the 
process in a finite material medium, which will be more exact whenever more basic cells are 
connected.  
  
 For the longitudinal vibrations in a thin rod, the wave equation that governs the 
process is given by [1]: 
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where ξ is the longitudinal displacement and c the phase velocity. The first step to get the 
network model is to do a spatial discretization of the specimen. Therefore, the rod is divided into 
N cells of length ∆x. Now, we define the current as: 
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where Y is the Young´s modulus of the material. If the current given in (2) is inserted in the 
wave equation, (1) becomes  
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where ρ is the density and the relationship c=(Y/ρ)1/2 has been used. In the next step, the  
spatial derivation is approached by the finite difference of the currents that flow at the left and 
right of the i-th cell (ji-∆ and ji+∆ , respectively), so we have: 
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This equation can be considered as a balance of currents go into the cell or leave it. Thus, we 
can rewrite it as: 
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Making the appropiate correspondence between the vibration and circuits equations, we 

can have the i-th basic cell of the network model represented in Figure 1 with the auxiliar 
circuits of Figure 2. The values of the elements of the circuits are: Ri±∆=∆x/(2Y), C=1 and L=ρ∆x. 

 
 
 
 



 

 
 
 
 

 
 The connection in cascade of many of these cells constitutes the network model of the 

longitudinal vibration of a thin rod. In this work we have used a network model of 150 basic 
cells. However, to have the complete equivalence between the physical problem and the 
network model, the initial and the boundary conditions must be incorporated. 
 
 
 
SIMULATION OF THE LONGITUDINAL VIBRATIONS OF THE THIN ROD 
 
 
 The longitudinal vibrations of a rod when an external force is applied on its initial point 
x=0, have been simulated with different conditions at the end of the rod, x=L. The Netwok 
Simulation Method allows us to implement complicated boundary conditions, but, as a first 
approach to this problem, it have been preferred to considered two simple boundary conditions, 
named “forced-fixed rod” and “forced-free rod”. 
 
 
Forced-Fixed Rod 
 
  First, the response of a rod with a fixed end and an external force applied in x=0 have 
been simulated. The boundary condition of fixed end is incorporated to the network model 
earthing the node that corresponds to that point. In addition, the applied force is simulated 

Figure 1. Basic cell of the network model 
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Figure 2. Auxiliar Circuits 



connecting a current source in the node that correspond to that end. Figure 3 shows the 
network model with these boundary conditions, where each cell is given by Figures 1 and 2, and 
F(t) is the force applied at the beginning of the rod. We have found the response to three 
different forces F(t): a step pulse (Figure 4), a low-frequency harmonic force (Figure 5) and a 
high-frequency harmonic force (Figure 6). We have compared it with the analytical solution 
obtained by using the techniques shown in [5]. In order to have general results, dimensionless 
variables have been used. 
 
 The step pulse have a duration of 0.05 s, the frequencies of the harmonic forces are 
25 Hz and 25 kHz, and all the forces have a dimensionless amplitude of 1. The rod is made with 
aluminium having phase velocity c=5150 m/s and Young´s modulus Y=7.1x1010 N/m. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Response at the central point of 
the forced-fixed rod to a step pulse. 

 

Figure 5. Response at the central point 
of the forced-fixed rod to a low-

frequency harmonic force (25 Hz). 
 

Figure 6. Response at the central point of 
the forced-fixed rod to a high-frequency 

harmonic force (25kHz). 
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Figure 3. Network Model of 
forced-fixed rod. 



Forced-Free Rod 
  
 The response of a rod with a free end and an external force applied at the beginning 
of the rod, x=0, have also been simulated. The boundary condition of free end is incorporated to 
the network model connecting an infinite resistance to the node that corresponds to that end, so 
the current in that branch is zero. Figure 7 shows the network model with these boundary 
conditions. Again, the response of the rod to three different forces have been found: a step 
pulse (Figure 8), a low-frequency harmonic force (Figure 9) and a high-frequency harmonic 
force (Figure 10), and we have compared it with the analytical solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Response at the central 
point of the forced-free rod to a 

step pulse. 
 

Figure 9. Response at the central 
point of the forced-free rod to a low-
frequency harmonic force (25 kHz) 

Figure 10. Response at the central point 
of the forced-free rod to a high-

frequency harmonic force (25 kHz). 
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Figure 7. Network Model of forced-
fixed rod. 



 It can be seen from these figures that the displacement in the forced-free rod increases 
throughout the time. It is due to the mathematical model which we have considered, but when 
the displacement is very high the equation (1) is not valid and it is necessary to use a more 
complicated model.  
 
 
 
CONCLUSIONS 
 
 
 The comparison between the results obtained from the simulation and the analytical 
solution of the response of the two kinds of rod (forced-fixed and forced-free) to every external 
force shows that all the simulations have results very similar to the analytical solutions (in the 
case of harmonic force of low frequency are nearly identical). It can be seen that the simulations 
present errors when the solution changes very fast, however they are small and shows a very 
high agreement with the theoretical solution. 
 
 These results show that this simulation method can be applied to more complicated and 
practical cases without analytical solution (or very difficult to obtain), as the case of a rod with a 
mass at the end of the road [1] [5], or including the dumping and/or dispersion of the wave [5].  
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