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ABSTRACT 
  
We present, in this paper, a feedforward control strategy in a cylindrical duct to reduce the noise 
produced by an axial fan. We have had to realize a synchronous control to follow the rotation 
frequency drifts of the fan. Consequently, the different identification filters are implemented with 
variable sampling rates producing frequency and phase response errors. We are interested in 
the variation domain of the fan rotation speed which guarantees the FxLMS algorithm stability. 
We have foreseen the maximum sampling interval with a sinusoidal source. We present 
simulation and experimental results. 
 
 
INTRODUCTION 
 
Active Noise Control was invented by Paul Lueg, german physicist, in the 30’s whose he 
presented the first patent in 1936 based on the superposition principle [1] [2]. In the 50th, the 
first adaptive algorithms appeared [3] but it had to wait 80th and Digital Signal Processor to 
realize the control in real time. In the case of ducts, notably, it is possible to reduce noise 
pollution using propagative wave properties that is to say, their modal structure. In our case, we 
consider a cylindrical duct with an axial fan which produces a two component noise that is to 
say a broadband noise and a tonal noise which emerges widely. We are interested in the 
reduction of the tonal noise for the two first frequencies f0 and 2f0 corresponding to the 
fundamental and first harmonic of the noise associated to the rotation frequency of the fan. 
 
 
1-THEORETICAL STUDY 
 
1-1 Independant Modal Control Strategy 
The first stage of noise reduction study produced by an axial fan has been carried out by L. 
TARDY [4][5]. He has succeed in the noise reduction using the modal structure of the 
propagated noise in the duct. He proceeded an adaptive control of the two first mode (0,0) and 
(1,0) with the implementation of the FxLMS algorithm in its classical and notch versions. The 
Independent Modal Control has been used. This strategy considers the propagative modes as 
independent. Then, an unique F.I.R filter W is associated to each mode. Because of modes in 
cylindrical duct are turning modes and to be able to detect (1,0) mode, we have had to 
decompose this mode in two orthogonal components which are coupled components. This has 
been done with secondary sources which produces counter-noise (modal decomposition) with 



residual error microphones (modal decomposition) [6]. Moreover, the global strategy uses a 
feedforward control whose reference signal is given by a Hall effect sensor placed on the fan. 
Then, the reference signal is unique and the system is a Single-Input - Multi-Output system [6]. 
A simulated study has been done by Chan [7] in the case of Multi-input Multi-output system to 
compare different control strategies without computation time problem.  
  
1-2 Synchronous Sampling 
To reduce the noise produced by the fan, the FxLMS algorithm has been implemented with 
synchronous sampling to follow the rotation frequency drifts of the fan. But some perturbations 
appeared. In effect, the use of FxLMS algorithm when we want to control multi-frequency 
signals is perturbed by the presence of  time-varying terms [8]. Glover [8] has demonstrated 
that the algorithm does not converge to the Wiener-Hopf solution. There are different solutions 
to resolve this problem. Elliott [9] has observed that with synchronous sampling, the adaptation 
process is linear and invariant with time when there is only one frequency to control. The 
system is linear time-invariant when the order of the filter is an integer multiple of half the 
number of samples per cycle. Then with a notch controller, we must have four samples per 
cycle [10]. However, time-varying terms make the system converge to a dynamic solution if we 
only use two coefficients per frequency to control. Glover [8] shew that to reduce influence of 
time-varying we have to increase the order of the FIR adaptive filter. Clark and Gibbs [10] 
proposed a solution for higher-harmonic control. Higher-harmonic are synthetised from the 
fundamental and a separate reference signal is available for each adaptive filter independently. 
This has been done in the HLMS algorithm. Oversampling is also used to have at least 4 
samples of the reference signal per cycle [11]. Then, Notch version of the FxLMS algorithm 
converge to the Wiener-Hopf solution without coefficient ondulations of the adaptive filter 
because of the orthogonality of the samples x(n) and x(n-1). So it is possible to employ FxLMS 
algorithm in its Notch version  to control tonal noise, if different reference signals are 
oversampled. The synchronous control is then possible with a limited computation time.  
Nevertheless, if the sample rate has so much important variations, the FxLMS algorithm diverge 
despite of all the precautions which have been previously evoked. The problem is based on the 
implementation of the identification filters at a specified sample rate to an other sample rate if 
there is no on line identification. When a digital filter (FIR or IIR) is used at different sample 
rates, errors appear in its phase and magnitude responses. It can be explained as a complex 
coefficient digital filter [12]. The phase and magnitude responses are shifted with a z-variable 
modification of the z-domain transfer function as shown in (2): 
 

        (1) 
 
Fig. 1 and 2 give an example of the the errors produced on the responses of a 5-order FIR 
digital filter for different sample rates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1- Frequency responses     Fig.2- phase responses 
 

As we can see on these figures, using different sample rate introduces an additional error 
between the real transfer function and the identification filters. This can have two consequences 
 
on the FxLMS algorithm. The values of the control step are limited by the maximum eigenvalue 
of the filtered reference signal autocorrelation matrix. Snyder and Hansen [13] have shown that 
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the maximum value of the convergence coefficient is altered by the error on the magnitude 
estimation. Moreover, the FxLMS algorithm can be made stable if the phase error is less than 
90° (in absolute value) [14]. FxLMS algorithm implementation with synchronous sampling to 
control tonal noise can provoke algorithm divergence because of the increasement of the error 
in the estimation of the transfer function or with a fixed step-size which becomes too important. 
 
1-2 Prevision Of Divergence 
As it has been explain in the previous sections, variable sample rate can make FxLMS 
algorithm to diverge. Nevertheless, it can be possible to foresee divergence by using secondary 
real transfer function properties and so, identification transfer functions. The real transfer 
function between secondary sources, which produce counter-noise, and error microphones, 
which measure residual error, can be assimilated to a notch filter because of the analogic filters 
which isolates frequencies to control. This property is going to be exploited to try to establish the 
stability frequency domain of the FxLMS algorithm in the case of an identification with N 
coefficients. Zeros are principally complex-conjugated and near of the unit circle.  
In a first time, let consider a digital filter with only 2 complex-conjugated zeros Z1=exp(-iθ) and 
Z1

*=exp(iθ) situated on the unit circle. The associated z-domain transfer function is given by with 
z = exp(iωT), F=1/T sample rate : 
 

H(z) = (1-z1z
-1)(1-z1

*z-1) = 2exp(-iωT)[cosωT-cosθ]          (2) 
 
Now, consider another digital filter whose zeros are near of the unit circle that is to say 
Z2=αexp(-iθ) and Z2

*=αexp(iθ) with α2 = 1+ε and ε << 1 so α ≈ 1+ ε/2. As precedently, the z-
domain transfer function can be written as : 
 
                   (3) 
 

 
 

 
The general idea is to express phase differences between transfer functions whose zeros are 
on the unit circle or near the unit circle for the different sample rates with a simple relation as : 
 
                   (4) 
 
This is possible if we exploit relations (2) and (3), for two sample rates F=1/T and  
F+∆F=1/(T+∆T), by writing the transfer function ratios with cosωT ≈ cosω(T+∆T) : 
 
 
                   (5) 
 
 
and 
 
                     

        (6) 
 
 
 
Relation (6) expresses the ratio of transfer functions whose zeros are near of the unit circle in 
function of the ratio of transfer functions whose zeros are on the unit circle with a corrective 
term. This corrective term can be developed as a function of ω∆T. At first order in ε : 
 
 
                   (7) 
 
 
 
 
Combining expressions (6) and (7), taking argument with hypothesis that arctanx ≈ x, we have : 
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                   (8) 
 
 
 
With relation (8), we have found k(ω) which satisfies relation (5). This relation can be easily 
generalised for an N-order digital filter with N/2 complex-conjugated zeros. If k(ω) is plotted, 
fig.3, then we can observe this variable is a constant on more or less significant intervals in 
function of the digital filter order. If the study domain is known, it is possible to choose k(ω) = k  
to simplify the problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.3- k(ω) corrective term for 2 complex-conjugated zeros 

 
After having determined a simple relation between phase variation for a transfer function whose 
zeros are near of the unit circle and phase variation for a transfer function whose zeros are on 
the unit circle, it is now possible to express phase difference between real transfer function and 
identification transfer function for a given sample rate : 
 
                 (9) 
 
with variables z and z’ for initial and final sample rates, Hreal and Hident represent z-domain real 
and identification transfer functions which have zeros near of the unit circle. (9) can be 
simplified by using (8); by considering that the initial identification is perfect, that is to say Hreal(z) 
= Hident(z), and by supposing that real transfer function is the same for any sample rates. 
So, we finally obtain : 
                  
       , N is identification order       (10) 
 
Nevertheless, anti-aliasing and reconstruction filters have transfer functions which vary with 
sample rate. These phase response modifications can be assimilated as a p-order pure delay. 
Then, equation (10) can be completed : 
 
               , p is acquisition order p < N    (11) 
 
FxLMS algorithm stability conditions  implicate that (11) must be equal to ± Π/2 at divergence 
limits. Then it is possible to foresee the algorithm divergence as : 
 

      (12) 
                  
 
This is equivalent to solve the 2-order following equation : 
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                 (13) 
                   
 
∆F is sample rate variation and F initial sample rate. Solutions of this equation are given by : 
 
 
                 (14) 
      
 
 
 
2-EXPERIMENTAL VERIFICATIONS 
 
In a first time, we wanted to verify theoretical study by controlling noise produced by a 
compression chamber in a cylindrical duct using notch FxLMS algorithm version. We only 
consider the (0,0) mode, we obtained similar results for (1,0) mode. This experimental 
verification had to reproduce fan frequency drift by modulating the frequency of the signal which 
fed the compression chamber until FxLMS algorithm diverged. An example of the coefficient 
variations for a continuous sample rate evolution is given in fig.4. An initial off-line identification 
is realized with 100-order digital FIR filters. The control has been effected twice : with a large 
and small control step to show its influence. As we can see in tab.1 and 2, value of control step 
can make diverge FxLMS algorithm with a phase error between real and identification transfer 
functions different from ± π/2. Reduce step size guarantees divergence for phase difference of ± 
π/2. There exist some differences between frequency intervals given by theoretical relations and 
experimental results. The reason is that identification phase is not perfect, initial phase error is 
different of zero as shown in fig.5. 
 
 
         
 
 
 
 
 
 
 
 
 
 
 
 
 
   
       Fig.4- Control coefficient variations          Fig.5- Identification error variations  
 

 Control step µ ∆Fexp > 0 ∆Fexp < 0 ∆Ftheor.  > 0 ∆Ftheor.  < 0 
0.01 504 Hz -492 Hz 586 Hz -630 Hz 

0.00005 648 Hz -576 Hz 553 Hz -638 Hz 
 

Tab.1- Frequency limits given by FxLMS algorithm stability 
 

Control step µ ∆θtheor.  
(∆F > 0) 

∆θexp. 
(∆F > 0) 

∆θtheor. 
(∆F < 0) 

∆θexp. 
(∆F < 0) 

0.01 -90° -64° 90 95° 
0.00005 -90° -88° 90 97° 

 
Tab.2- angular limits given by FxLMS algorithm stability 
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3-CONCLUSION AND PERSPECTIVES 
 
We have found a theoretical expression to foresee divergence of the FxLMS algorithm in its 
Notch version with an N-order identification FIR filter. Experimental results are coherent with 
theory but differences exist because of initial error between real and identification transfert 
functions. The solution would be to have FIR filters with an order more important but we are 
limited by computation time. Now, we are interesting in the real case with axial fan. We are 
working on the divergence prevision with variable air flow which modifies phase response of the 
real transfert function. 
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