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ABSTRACT 
The grating structure as the most fundamental element of SAW (Surface Acoustic Wave) devices 
is discussed. The modeling based on the periodic modulation of basic properties is included. 
Diffraction characteristics of general planar (slab) gratings and surface-relief (corrugated) gratings 
are presented. An exact formulation of grating diffraction problem without approximations 
(rigorous coupled-wave theory) is proposed. Starting from the wave equation, rigorous form of 
analysis with coupled-wave theory is developed. 

I. INTRODUCTION 

Diffraction of SAW (surface acoustic wave) by periodic structures is of increasing importance in 
an expanding variety of engineering applications. Grating diffraction is central in the fields of 
acoustooptics, integrated optics, holography, data processing, and spectral analysis. 
Gratings may be planar (slab) gratings. The periodic modulation may be in the permittivity (or 
equivalently index of refraction) or in the conductivity (or equivalently absorption) or combination 
of these. Also gratings may be of the surface-relief (corrugated) type with periodic variations in 
the surface of material. 

Diffraction of SAW by spatially periodic media may be analysed by numerous methods and with a 
wide variety of possible assumptions. The method of multi-wave coupled-wave theory of 
analysing grating diffraction is used. The coupled-wave approach is confusingly also sometimes 
called coupled-mode approach. Starting from the wave equation, rigorous form of analysis with 
coupled-wave theory will be developed. 



II. ANALYSIS OF FIELD INSIDE GRATING 

A. Field Representation 

A plane grating in the region from z = 0 to z = d, as depicted in Fig.1, can be described by 
( ) 'cos' 10 Kxx ρ+ρ=ρ     (1) 

where ρ0 is the average mass density in the grating region, ρ1 is the amplitude of the sinusoidal 
relative density, φ is grating slant angle, and Λ

π= 2K , where Λ is the grating period. For an 

incident plane wave, the wave equation is 
( ) ( ) ( ) 0',''',' 22 =ρ+∇ zxAxkzxA      (2) 

where λ
π= 2k  and ( )',' zxA  is the total field inside grating. The field in the grating region may be 

expressed in terms of “modes”, thus the total field may be written as 

( ) ( )∑
∞

−∞=ν
ν= ','',' zxAzxA     (3) 

 
Fig.  Planar slanted-fringe grating geometry 

The field corresponding to a particular mode ν, may be assumed to be expressible as a product 
so that 

( ) ( ) ( )''',' zZxXUzxA νννν = .    (4) 
Upon substitution of this assumed solution into (2), and dividing by Aν(x',z'), separation of 
variables in the wave equation is achieved. Thus the x’ and the z’ part must be equal to a 
constant.  Letting the constant to be -ξ2

ν, the solution for ( )'zZν  may be written as 

)'exp()'( zjBzZ ννν ξ−= .    (5) 
The x’ equation resulting from separation of variables is 
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where 2
0

2
1 νξ−ρ= ka  and 1

2
2 ρ= ka . The general solution of this equation was found by Floquet 

to be 
)'exp()'()'( xjxxX ννν β−Φ=     (8) 

where βν is a phase factor and )'(xνΦ  is periodic in x'  with period Λ. That is, 
)'()'( Λ+Φ=Φ νν xx     (9) 

for any x’. Since )'(xνΦ  is periodic, it may be expanded in a Fourier series as 
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i jiKxCx )'exp()'(    (10) 

and so )'(xXν may be written as 

∑
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−∞=
ννν β−=

i
ii xjCxX )'exp()'(    (11) 

where 
iKi −β=β νν .   (12) 

Equation (12) is often referred as the “Floquet condition”. Each modal field, 
( ) ( ) ( )''',' zZxXUzxA νννν = , may thus be expressed as 

∑
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−∞=
νννϑν β−ξ−=

i
ii xjCzjDzxA )'exp()'exp()','(    (13) 

where ννν = BUD . Rotating from coordinate system  of the grating (x',z') to the coordinate system 
of the boundary (x, z), the total field may be expressed as 

∑
+∞

−∞=
ννννν φξ−φ−β−=

i
i xiKjCDzxA }]cossin)[(exp{),( }.]cos)(sin[exp{ ziKj φ−β+φξ−⋅ νν  (14) 

The normalized field of the incident plane wave is given by 
)](exp[)exp( 111 zkxkjrkjA zxi +−=⋅−=    (15) 

where 'sin2
1

11 θρ= kk x , and 'cos2
1

11 θρ= kk z  . For the limit case of zero grating modulation (ρ1→0), 
the  i = 0 undiffracted field of each mode is phased matched to the incident field at the z = 0 
boundary. That is 

xx kk 21 =    (16) 

where θρ= sin2
1

2 ox kk  , and θ is the angle of refraction of the incident wave in the second region. 
From (14), the phase-matching condition is thus 

φξ−φβ=θρ νν cossin'sin2
1

1k .   (17) 
The total field inside grating is represented by the sum of all of the individual modal fields as 
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and so the total field is 
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This is a general form for the field inside grating, produced by  an incident plane wave. This 
equation is rigorously derived (without approximations). The total field can be rewritten as a sum 
over the space-harmonic components i, and coupled-wave field expansion can be obtained from 
it. 

B. Coupled-Wave Expansion and Resulting Equations 

Interchanging the order of the summations in (19), the total field inside grating  may be rewritten  
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−∞=ν
νννν

+∞
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Performing the summation over the modes ν, the quantity )(ˆ zSi  may be defined as 



( ) }]cos)(sin[exp{ˆ ziKjCDzS ii φ−β+φξ−≡ ννν
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and this is a function of z only. A new function of Si(z) may be defined as 
( ) ( ) ])cos(exp[ˆˆ 2 ziKkjzSzS zii φ−+=    (22) 

so that the field may be expressed as 

( ) ( ) ]})cos()sin[exp{, 22 ziKkxiKkjzSzxA zx
i

i φ−+φ−−= ∑
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 (23) 

or in vector notation 

∑
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i rKikjzSzxA ])(exp[)(),( 2    (24) 

where 2k  would be the wavevector of the refracted incident wave in the absence of grating 
modulation. This form of the total field is more useful, since leads to constant-coefficient coupled-
wave differential equations for general slanted gratings. This form of the expansion express the 
total field as the sum of inhomogeneous plane waves having wavevectors given by the vector 
Floquet condition 

Kiki −=σ 2 .   (25) 

The expansion (24) has great intuitive appeal. The incident homogeneous plane wave may be 
visualized as being divided into many diffracted inhomogeneous plane waves that have directions 
given bay (25), the vector Floquet condition for unbounded periodic medium. The phase fronts of 
inhomogeneous plane waves i = 1 to i= +2 are depicted in  Fig.2 together with the corresponding 
Floquet condition (shown in inset). 

 
Fig. 2. Visualization of inhomogeneous plane waves inside the grating  

The i  = 0 inhomogeneous plane wave corresponds to the refracted incident wave. In this 
expansion, the diffracted waves form an inference pattern with the incident wave that has a 
periodicity Λ and slant angle φ that are the same as grating. Substituting the expansions (23) and  
(1) into the wave equation, and performing the indicated differentiations gives 
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where the quantity m has been defined as 
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λ
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1
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These rigorous coupled-wave equations represent a set of second-order linear differential 
equations with constant coefficients. Using the methods of linear system analysis  this equations 
system may be transformed into a state-space description. By defining the state variables as 
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the infinite set of second order differential equations (26) are transformed into infinite sets of first-
order differential equations 
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Equations (29) are the state equations corresponding to the rigorous coupled-wave equations 
(26). These constituent sate equations may be written in matrix form as 

ASS =&    (30) 

where S&  and S  are the column vectors  and A  is the coefficient matrix. 

III.  SURFACE-RELIEF GRATINGS 

A. Problem Formulation 

Surface-relief (corrugated) gratings can be rigorously analysed using coupled-wave analysis. This 
can be done by dividing the surface-relief grating into large number of the thin (planar) layers. 
Each layer is then analysed using the state variables method of solution of the rigorous coupled-
wave equations for that grating. There are no approximations in the analysis and results are 
obtainable to any arbitrary level of accuracy. 

Incident
wave

d

ρΙ ρΙ

 
Fig.3  The nth planar grating resulting from decomposition of a surface-relief grating. 

Region 1 and 3, as shown in Fig. 3, are homogeneous with densities ρΙ  and ρΙ Ι Ι  , respectively. The 
region 2 (the grating region) consists of a periodic distribution of both types of materials. The 
boundary between region 1 and 3 in region 2 is given by  

( ) ( )Λ+= xFxFz    (31) 
where Λ is the grating period. The function F(x) represents the grating surface profile, and there 
are no restrictions on the form of F(x) in this analysis.  

B. Coupled-Wave Expansion and Resulting Equations 

In the present analysis, the grating region is divided into N thin planar gratings slabs 
perpendicular to the z axis. Then the rigorous coupled-wave analysis that has been developed for 
planar gratings is applied to each slab grating. If the individual planar grating are sufficiently thin, 



any grating profile can be analysed. The relative density for nth slab grating is periodic, ρn(x,zn)= 
ρn(x+ Λ,zn), and may be expanded in a Fourier series as  

( ) ( ) ∑
∞

−∞=

ρρ−ρ+ρ=ρ
h

jhKx
nhnn ezx ,IIIII

~,    (32) 

where  zn is the z coordinate of the  nth slab, h is the harmonic index, K is the magnitude of the 
grating vector (K=2π/Λ), and nh ,

~ρ  are the normalized complex harmonic amplitude coefficients 

given by  
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where f(x,zn) is equal to either zero or unity depending whether, for particular value of x, the 
grating relative density is ρ I or ρ III, respectively. Using equation (24) the field in nth slab may be 
expressed as 

( ) ( ) ])[(exp, ,2,,2 rKikzSzxA n
i
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   (34) 

where xKK ˆ=  and λρπ= /)(2 2/1
,0,2 nnk  is the wave-vector of the zero-order refracted wave, and 

ρ0,n is the average relative density for nth slab grating. Substituting (33) and (34) into wave 
equation, performing the indicated differentiations, and setting the coefficient of each exponential 
term equal to zero for nontrivial solutions yields the coupled-wave equations for nth slab grating 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )[ ] 0~~

'sin2

1

,
*

,,,
2

,
2,2/122

1
2
,22

,
2

=ρ+ρρ−ρ+

−+θ−−

∑
∞

=
+−

h
nhinhnhinhIIII

ni
ni

n
ni

zSzSk

zSimiK
dz

zSd
kkj

dz

zSd

 (35) 
These coupled-wave equations are analogous to (26). 

IV.  SUMMARY 

A rigorous analysis of diffraction by slab gratings and surface-relief gratings has been presented. 
The field inside the modulated medium is expanded in terms of the space-harmonic components 
(i) of the field in periodic structure. By selecting appropriate coupled-wave expansion, the 
amplitudes of space-harmonic components of the field have been shown to be directly obtainable  
using a state-variables approach from linear system theory. 
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