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ABSTRACT 
During the ultrasonic nondestructive evaluation of materials, like multilayer carbon-epoxide 
composites, the behavior of the ultrasonic waves is determined by the anisotropy as well as the 
attenuation characteristics of the propagation media. Therefore the use of inhomogeneous 
waves is required and both real and imaginary parts of the data involved have to be considered. 
The developed numerical model allows the analysis of the reflection/transmission problem. The 
rotation of the incidence plane around the axis normal to the interface plane gives us 
tridimensionnal representations of the energetic coefficients leading to interesting information on 
the media. 
 
 
INTRODUCTION 
 
The use of ultrasonic non destructive evaluation is now widely spread in several fields of 
industry. As stated for a long time ago the behavior of the ultrasonic waves at the interface of 
samples requires to take into account the anisotropy as well as the attenuation characteristics of 
the propagation media in order to understand the signals obtained. Several computational 
models have been developed in our laboratory in that aim. The use of the representation of the 
reflection/transmission problem by mean of the complex slowness curves points out the 
evolution of the interaction of the waves at the interface. 
 
 
 
THEORETICAL CONSIDERATIONS 
 
 Formalism 
 
We developped since several years a propagation model involving inhomogeneous 
monochromatic plane waves. The displacement of such a wave can be written: 
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where A is the complex scalar amplitude, P is the complex polarization normalized according to 
the Hermitian product [1], m

r
 is the complex slowness vector noted "' mimm

rrr += , where the 
real and imaginary parts correspond respectively to the propagating and attenuating parts of the 

wave. X
r

is the position vector according to the followings coordinates: x1x2 is the plane of 



interface between the different media, x1x3 is the plane of incidence. ω is the pulsation or the 
angular frequency, t is time. Usually, x3 represents the direction of highest degree of symmetry 
of the material before any tilt.  
 
 Method 
 
According to developments detailed elsewhere [2], the motion equation leads to the Christoffel 
equation :  

ikljijklik mmCG ρδ−=  

where ikG  stands for the elements of a symmetrical tensor of second-rank, called Christoffel 

tensor, ijklC  is an element of the stiffness matrix and ikδ is a component of Kronecker second-

rank tensor. This system admits non-zero solutions only if : 
( ) 0Gik =det  

which leads to a 6th order eigenvalue equation in 1m and 3m , the components of the 
slownesses in the incidence plane. Once the incidence wave being chosen, the incidence angle 
yields to the value of m3, and applying these considerations together with the boundary 
conditions at the interface, we obtain a system of equations in m1. These equations are 
numerically solved and the determination of the six slowness vectors enables us to find the 
polarization vectors associated with these slowness vectors. It is well known that three solutions 
only are physically acceptable in each medium among the six obtained [3]. The selection of 
these waves is then performed according to an energetic criterion. 
 
 
 
DISCUSSION 
 
 Energetic Considerations 
The choice to perform in order to select the valid solution is a matter of discussion. The 
inhomogeneity characteristics of the fields cause the amplitude to rise infinity toward one 
direction, depending of the orientation of the inhomogeneity vector. In order to be coherent with 
the homogeneous case, it seemed to us that the better choice was the energetic criterion, i.e. 
the energetic flow vector of the transmitted waves has to point towards the transmission 
medium, no matter the incident angle is [4]. This can even be illustrated by the trivial case of an 

inhomogeneous wave reflecting 
upon an interface (Figure 1). 
According to the Snell-Descartes 
laws of refraction, the horizontal 
components of the slowness 
vectors are the same, and for a 
isotropic media the vertical 
components of the vectors are also 
equal. This means that one of the 
two fields has its inhomogeneous 
component, which is drawn in pink 
in the figure, such that the field 
increases when the observer 
moves away from the interface. 
Indeed, we must note that the 

Sommerfeld radiation criterion, which stands for the amplitude decay with distance from their 
cause, is not convenient for plane waves [5]. 
 
When the angle between the directions of inhomogeneity and propagation is negative, by 
respect to a direct triad (for example figure 2a, bottom), the radiation and energetic criteria lead 
to the same results. As a consequence, for positive values of this angle between m" and m' 
(figure 2b), it may seem to be paradoxical to have a transmitted field whose amplitude increases 
with the distance from the interface. 
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Figure 1 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The point is that we have to consider that the existence of the field is not due solely to the 
incident/reflected field which is directly above the interface but to the whole field which exists in 
all the upper semi-space from an infinite time. Thus, it is necessary to take into account the 
totality of the phenomenon, in space and time [5]. 
 
 
 Tridimensionnal Coefficients 
 
Using our numerical model, we compute the different coefficients as well as slowness and 
energetic flux vectors for the reflection/transmission problem at the plane interface between two 

arbitrary media. The computation 
details being explained elsewhere 
[4,5], we only consider here the 
results obtained. Choosing the 
interface between water and nickel  
monocrystal as an example, the 
figure above (Figure 3) shows the 
geometry of the problem and the 
orientation of the planes involved by 
our study. For each relative 
orientation of the incident plane vs 
the crystallographic planes, we 
calculate the energetic coefficients 
at the interface and represent the 
reflection energetic coefficient. After 
a complete rotation of the incident 
plane, we obtain the tridimensionnal 
energetic coefficient as a function of 

the incidence angle, say θ, as well as the angular orientation around the vertical axis, say ψ. 
This result can be expressed by different means : cartographic, iso-levels, tridimensionnal 
surface plot. 
 
 
APPLICATION TO SEVERAL CASES 
 
 Water - Nickel Monocrystal 
 
As a first example, we consider the case of the interface between water as the incidence 
medium and nickel monocrystal as transmission medium. Both water and nickel are assumed to 
be non absorbing. The figure 4 represents the intersection of the slowness surfaces with the 
incidence plane when ψ = 0° . The blue curves refer to the real parts of the slowness vector  
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Figure 3 



(circle : water), and the red curves are relative to the imaginary parts [6]. The figure 5 shows the 
reflection coefficient as a function of θ. Due to the symmetry of the media, this curve is 
obviously symmetrical by respect 
to the normal direction. The 
figure 6 presents the 
tridimensionnal energetic 
reflection coefficient. We can 
notice the wide extern red area 
which corresponds to the flat 
parts of the curve of the figure 5. 
It is interesting to note that the 
symmetry characteristics of the 
transmission media, namely 4-
fold axis, is pointed out by the 
representation of this coefficient. 
The axis refer to the incidence 
angle in degrees and the 
direction ψ = 0° corresponds to 
the horizontal axis. The figure 5 
can be seen as an horizontal 
slice of the figure 6. 
 
 
 Water  - Carbon Epoxide 
 
We present some results in the case of the interface between water as incident medium and 
carbon-epoxide as transmission medium. We will consider the media non absorbing as well as 
absorbing. We only present the energetic reflection coefficients. 

 

 
 

 

 
Figure 4 
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Figure 6 

 

 

 
 

 

 
Figure 7 

 

 
Figure 8 

 



The figure 7 shows the case of non absorbing media. Due to the axi-symmetry of the media, we 
obviously obtain an axi-symmetrical figure. The figure 8 shows the bidimensionnal 
representation of the coefficient. 

The figure 9 to 12 refers to the same transmission medium after a tilt of 15° around both the x1 
and x2 axis. On figure 9 the carbon-epoxide is non absorbing and the incident wave is 

homogeneous. In the following figures the carbon-epoxide is absorbing and the incident wave is 
inhomogeneous for figure 11 and 12, with different evanescent component h, perpendicular to 
the propagation direction. For the figure 11 h=0.01µs/mm and for figure 12 h=0.05µs/mm. In 
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these last cases, the values of the coefficient can rise value above unity [7,8], as stated in the 
general inhomogeneous cases. In particular, for great values of inhomogeneity, like exposed by 
figure 12, the coefficients can reach important values for grazing incidences [9]. The figure 13 
shows the difference between the coefficient in cases depicted by figures 11 and 10, i.e. the 
shift in the coefficient when the evanescent component changes from 0 to 0.01µs/mm. The 
figure 14 is a volumetric representation of the same quantity. 
 
 
CONCLUSION 
 
The use of a tridimensionnal angular representation of the energetic coefficient at the interface 
between media permits a global consideration of the phenomenon encountered. The 
differences obtained when the parameters are changed are easily pointed out by this kind of 
representation. The exploitation of this method is on the way in order to improve the modeling 
approach of the reflection/transmission problem at the interface between arbitrary anisotropic 
media. 
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TABLE 
 
Parameters used for the propagation media : volumetric mass ρ in kg/m3, and viscoelasticity 
constants in GPa. The imaginary parts of the viscoelasticity constants are according to literature 
references. 

 Water Nickel Carbon  
epoxide 

ρ 1000 8620 1595 

11C  2.19-i0.00219 250 13.7-i0.130 

12C  2.19-i0.00219 155 7.1-i0.040 

13C  2.19-i0.00219 155 6.7-i0.040 

22C  2.19-i0.00219 250 13.7-i0.130 

23C  2.19-i0.00219 155 6.7-i0.040 

33C  2.19-i0.00219 250 126.0-i0.730 

44C  0 130 5.8-i0.100 

55C  0 130 5.8-i0.100 

66C  0 130 3.3-i0.045 

 


