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ABSTRACT

The product frequency-frequency phase derivative of the reflection coefficient of an immersed
elastic plate, calculated at a resonance frequency, is proportional to the frequency Qx factor.
Denoting as y the incident angle sine, the product y-phase derivative with respect to y
corresponds to an angular Qy  factor. From the expressions of the different mean energies
related to wave propagation and the definition of the energy velocity depending on the ratio of
the average power flow through the plate thickness to the average total stored energy, we can
express the energy velocity as a function of Qx, Qy  and the phase velocity.

INTRODUCTION

The subject of this paper is based upon the combination of two methods of investigation of
guided waves in an elastic plate immersed in a fluid. From an energy point of view, we
classically obtain the guided wave energy velocity by calculating the ratio of the average power
flow through the plate thickness to the average stored energy per unit length of the plate,
according to Auld [1]. This energy velocity is said to be equal to the group velocity; it is, in most
cases, numerically true. We can also study the resonant aspect associated to the guided wave
propagation, which involves radiated energy into the fluid. The Phase Gradient Method (PGM)
consists in studying the partial derivatives of the phase of the reflection coefficient of the plate,
with respect to the frequency, the incident angle and the phase velocities of the different waves
involved in the problem. This method is proved to be efficient to characterize the resonances of
the plate [2]. It is shown in this paper, that, on the one hand, the PGM leads to the introduction
of frequency, angular, longitudinal and transverse quality factors, and, on the other hand, the
group velocity can be recovered using the frequency and angular quality factors. Using their
energy definitions, we can relate these quality factors to different average stored energies. In
addition, we show that the energy velocity can also be obtained thanks to the frequency and
angular energy quality factors. In a first part, we briefly recall the basis of the PGM and define
the different quality factors. In a second part, the expression of the group velocity as a function
of the quality factors is demonstrated. In a third part, their energy expressions are established.
In a fourth part, the relation linking the energy velocity and the quality factors is presented.



I BASIS OF THE PHASE GRADIENT METHOD (PGM)

Let us consider an elastic plate, immersed in a fluid, insonified at the incidence angle è , by an
harmonic plane wave of frequency f. The plate thickness is d, its density ρS , the phase
velocities of the longitudinal and transverse waves propagating in the plate are cL,T. In the fluid,
the density is ρF , the phase velocity is cF. For the numerical results, we consider a 5 mm-thick

aluminum plate immersed in water. The parameter values are: ρ = 3
S 2800 kg/m ,

=Lc 6380 m/s , =Tc 3100 m/s , ρ = 3
F 1000 kg/m  and =Fc 1470 m/s .

The factorized expression of the reflection coefficient of the immersed plate can be written as:
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The nullity of the functions CA,S gives the antisymmetric and symmetric vibration modes of the
plate in vacuum and τ  is the ratio of the acoustic impedances in the fluid and in the plate.
The phase φ  of the reflection coefficient can be written as:
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The Phase Gradient Method consists in studying the partial derivatives of the phase with
respect to the frequency f, the sine of the incidence angle, y, and the phase velocities cL,T,F. This
method is based on a fundamental relation [2, 3], linking the different partial derivatives:
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It is valid, whatever the frequency f and the incident angle è . Moreover, we can show, in the
vicinity of a resonance frequency, fRes, the following relation:
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The resonance frequency fRes corresponds to the real part of a frequency pole of R  and are
denoted as

Γ
= −P Resf f j
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where Γ  is the resonance width.

We can show that an approximated expression of the function ( )∂φ
∂
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So, when f=fRes, one has
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Qx  is the classical frequency quality factor. In Figure 1, following the A11 mode dispersion curve,
we have plotted the evolutions of the frequency quality factor Qx, obtained either by the
frequency phase derivative (solid line) or by the frequency poles Pf  (dashed line); the
agreement is very good.

By analogy, all the functions of the type ∂φ
∂ L,T,Fu , u=c , y
u

, calculated at fRes, are also proportional

to quality factors. In particular, we can write
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.

the angular phase derivative being negative, in most cases.



Qy is qualified as an angular quality factor. It corresponds to the ratio of the real part to the
imaginary part of the angular pole of R , calculated at fRes. Denoting an angular pole as
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2
, the angular quality factor can be written as:
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In Figure 2, still for the A11 mode, we have plotted the evolutions of the angular quality factor Qy ,
obtained either by the angular phase derivative (solid line), or by the angular poles 

P
y  (dashed

line); the comparison is still very good.
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Evolutions of 1/Qx for the A11 mode,      Evolutions of 1/Qy  for the A11 mode,
obtained by the frequency phase derivative        obtained by the angular phase derivative
(solid line) and by the frequency poles        (solid line) and by the angular poles
(dashed line)        (dashed line)

II EVALUATION OF THE GROUP VELOCITY WITH THE QUALITY FACTORS QX AND QY

The group velocity, vg, is classically defined as
∂ω

=
∂g

x
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K

.

where ω  is the angular frequency and Kx is the wave number of the guided wave propagating
along the plate, at a resonance frequency fRes.
KX can be written as
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where, according to the Cremer's coincidence rule, the ratio Fc
y

 corresponds to the phase

velocity vx.
So, the group velocity can be written as
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It was shown [2], that
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In Figure 3, following the dispersion curve of mode A11, we have plotted the evolutions of
∂ 

 ∂  R e sf

y
f

(solid line) and 
γ
Γ
P  (dashed line): the validity of the previous relation is numerically

proved.
Using the definitions of Qx and Qy , we may now write the following approximated relation:
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In Figure 4, we have plotted the evolutions of the group velocity, obtained either from its
classical definition (solid line) or from the previous relation (dashed line). The agreement is
good.
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III IDENTIFICATION OF QX AND QY TO ENERGY EXPRESSIONS

The energetic definition of a quality factor is
ω

=
stored Energy

Q
Dissipated Power

where the brackets indicate that we deal with average values.
Therefore, we establish the expressions of the average kinetic and potential energies stored in
an elementary volume dV in the plate, of length dx. Without detailing, we can show that the
average kinetic and potential energies are identical, as for a plate in vacuum [4]. So, in the
following, we only consider kinetic energies. The average kinetic energies associated to the
longitudinal and transverse waves in the plate are obtained by
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We can decompose these energies into one term corresponding to a displacement along the x-
direction (parallel to the plate) and another term corresponding to a displacement along the z-
direction (normal to the plate). We denote them as
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We can show, that :
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We may interpret the energies 
LxKE  and 

T zKE  as average energies respectively associated

to guided longitudinal and transverse waves in the plate and the energies 
LzKE  and 

T xKE as

average energies associated to longitudinal or transverse standing waves in the plate thickness.



We also introduce average interaction energies between longitudinal and transverse waves,
defined as:
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The dissipated power, dP , is obtained by calculating the z-components of the Poynting vector
at the interfaces between the plate and the surrounding fluid. One has
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We introduce the following notations
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We can show analytically that the frequency quality factor may be obtained by
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The frequency quality factor is explicitly related to standing waves across the plate and the
angular quality factor to guided waves along the plate. So, Qx/(Qx+Qy ) can be viewed as a
stationnary wave ratio and Qy /(Qx+Qy ) as a guided wave ratio. In Figures 5 and 6, we compare
the evolutions of Qx,y  obtained either by the frequency and angular phase derivatives (solid
lines), or from their energy expressions (dashed lines). The comparison of the Qx plots is very
good, the one of the Qy  is also quite good, except in the vicinity of the longitudinal critical angle.

6 8 10 12 14 16 18 20
f HMHz L0.001

0.002

0.003

0.004

0.005

0.006

0.007

        6 8 10 12 14 16 18 20
f HMHz L0.002

0.004

0.006

0.008

0.01

0.012

0.014

Figure 5 Figure 6

Evolutions of 1/Qx for the A11 mode,      Evolutions of 1/Qy  for the A11 mode,
obtained by the frequency phase derivative        obtained by the angular phase derivative
(solid line) and by its energy expression        (solid line) and by its energy expression
(dashed line)        (dashed line)

IV EVALUATION OF THE ENERGY VELOCITY

We classically define the energy velocity, ve,  as the ratio of the average power flow through the
plate thickness to the average total stored energy. We can write

2
= =x x

e
tot K

P P
v

E E

where xP  is the average value of the x-component of the Poynting vector calculated on a right

section of the plate and KE is the average total kinetic energy.



We have
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We verify numerically that the ratio xP / EP  is nearly equal to the phase velocity vX, as shown

in Figure 7. So, the energy velocity can be written
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We obtain the same formula as for the group velocity.
In Figure 8, we compare the plots of the energy velocity obtained either by its classical definition
(solid line), or by the previous relation (dashed line); the agreement is good.
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Plots of the phase velocity cx (solid line)    Plots of the exact energy velocity
and of xP E/ P  (dashed line) (solid line) and the approximated one

(dashed line)

V CONCLUSION

In this paper, it was shown that, the group velocity, as well as the energy velocity, can be
obtained by means of frequency and angular quality factors. They can be easily obtained using
the Phase Gradient Method. The energy developments presented show that these velocities,
numerically equal, can be written as the product of the guided wave ratio Qy /(Qx+Qy ) and the
phase velocity.
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