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ABSTRACT 
 
We consider the phase of the eigenvalues of the S-matrix associated to a cylindrical evacuated 
shell immersed in a fluid. The study of the phase partial derivatives with respect to the 
frequency, the incident angle, the phase velocities of longitudinal and transverse waves in the 
shell, at a resonance frequency, leads to the introduction of frequency Qx, angular Qy , 
longitudinal QL and transverse QT quality factors. For shells of b/a=0.8, the wave polarization is 
analyzed by studying the evolutions of QL,T, in the reduced frequency range 10-250. The 
evolutions of Qx,y  allow to determine the wave energy velocities. 
 
 
INTRODUCTION 
 
The formalism of the so-called Phase Gradient Method (PGM) was first established by J. M. 
Conoir [1], in the case of cylindrical shells. It consists in studying the partial derivatives of the 
eigenphase δn  of the S matrix associated to the shell. A fundamental relation, which is the basis 
of the PGM, links the frequency phase derivative to the phase derivatives with respect to the 
longitudinal and transverse phase velocities of the corresponding waves propagating in the 
elastic shell and with respect to the phase velocity of the waves propagating in the surrounding 
fluid. It was shown, in the case of plane geometries, that an analogous relation exists, dealing 
with the phase of the reflection coefficient of an immersed elastic plate [2]. In this latter case, it 
is proved that the PGM naturally leads to the introduction of frequency, angular, longitudinal and 
transverse radiation quality factors. We show in this paper, that these quality factors can also be 
introduced for cylindrical shells. By analogy with the plate results, we establish that the study of 
the longitudinal and transverse Q factors allows us to obtain the polarization state of the Lamb-
type waves and torsional waves (T waves) propagating in the shell. In addition, the evolutions of 
the frequency and angular quality factors give the energy velocity of given waves. In a first part, 
we recall the basis of the PGM applied to cylindrical shells. In a second part, we present the 
different quality factors. In a third part, the wave polarization state is studied by means of the 
QL,T factors. In a fourth part, it is shown that the energy velocity depends on the Qx,y  factors.  
 
 
 
 
 
 



II BASIS OF THE PHASE GRADIENT METHOD (PGM) APPLIED TO CYLINDRICAL SHELLS 
 
 
It was shown [1] that the nth eigenvalue Sn, related to the mode number n, of the scattering 
matrix S, can be written as  
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where Dn is the determinant derived from the writing of the boundary conditions. In the case of 
an evacuated cylindrical shell, Dn is the determinant of a (7 × 7) matrix and the asterisk * 
indicates the complex conjugation. As 1=nS , we can write  

2 δ= nj
nS e        Eq. (2) 

where δn is the half-eigenphase corresponding to the eigenvalue Sn. 
Taking into account an appropriate background (it generally depends on the b/a ratio (a: shell 
outer radius and b: inner radius)), we can decompose Sn as 

= (bg) (*)
n n nS S  S        Eq. (3) 

where (bg)
nS  corresponds to the background part of Sn and (*)

nS  to its resonant part. 
So, the half-eigenphase δn  can be written as 

δ = δ + δ(bg) (*)
n n n .       Eq. (4) 

In the following we study an evacuated aluminum shell of b/a = 0.8, for which a rigid background 
is commonly considered as well adapted. 
The half-eigenphase δn  and its components explicitly depend on the frequency f (or the 
normalized frequency x = 2π Ff a / c ), the phase velocities cL,T  of the longitudinal and transverse 
waves which propagate in the elastic shell, and on the phase velocity cF of the waves 
propagating in the surrounding fluid medium, as well as on the incidence angle θ  (or its sine y) 
and the ratio ρ = ρ ρS F/  of the density of the shell to that of the fluid. It was demonstrated by 
J.M. Conoir [1] that the partial derivatives of δn , with respect to f, cL, T, F, y and ρ  can be 
obtained thanks to the following formula: 
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where Im indicates the imaginary part.  
One has: 
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In addition, the following fundamental relation, which is the basis of the PGM has been proved: 
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As 1= θ(rig) ( )
n n
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n only depends on f, cF and y = sin θ . We can show   
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So, we deduce from the previous equations the following one: 
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This equation is valid whatever the incidence angle and the reduced frequency x, in particular 
for a resonance frequency xRes.  xRes is the real part of a frequency pole of Sn (or a root of Dn), 
generally denoted as 

Γ
= −P Resx x j

2
       Eq. (9) 

where Γ  is the half-width of the associated resonance. 



From the Resonant Scattering Theory (RST), we can obtain, in the vicinity of a resonance 
reduced frequency xRes, the following approximate expression of the frequency resonant phase 
derivative: 
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When x = xRes, one has: 
 ∂δ = ∂ Γ 
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So, the function ∂δ ∂(*)
nx / x , calculated at xRes, is proportional to the classical frequency quality 

factor defined as the ratio ΓResx / . In the following, it is denoted as Qx.  
The following numerical results are obtained for an aluminum cylindrical shell immersed in 
water. The values of the parameters used are: aluminum density 3

Sñ =2790 kg/m , longitudinal 
phase velocity Lc =6380 m/s , transverse phase velocity Tc =3100 m/s , water density 

3
Fñ =1000 kg/m  and wave phase velocity in water Fc =1470 m/s . 

In Figure1, we have compared the frequency plots of the exact function ∂δ ∂(*)
nx / x  (solid line) 

and of its approximate expression ∂δ ∂(*)
n appx / x  (dashed line), for the mode number n = 1 

assigned to the Lamb-type wave A3, at θ = °5 . In these conditions, the exact calculation of the 
frequency pole give = −

3Ax 145.66 j 1.73 . 

The two curves are well superimposed. Each plot exhibits a Breit-Wigner shape, whose 
maximum is centered on the resonance frequency xRes and whose maximum amplitude 
corresponds to the ratio ( ) ( )−

3 3A ARe x /Im x . 

 

Figure 1: Plots of the exact function 
∂δ
∂

(*)
nx
x

 (solid line) and of the approximate one 
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The frequency plots of each function ∂δ ∂(*)
n L,T,Fu / u, u=c , also exhibit Breit-Wigner shapes, as 

shown in Figure 2. They present extremums, nearly centered on the resonant frequency xRes 
and their half-widths are the same as the one of the function ∂δ ∂(*)

nx / x . 
 



 

Figure 2: Plots of the functions 
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By analogy with the frequency phase derivative, all the functions ∂δ ∂(*)
n L,T,Fu / u, u=c , calculated 

at xRes, are also proportional to quality factors. We set  
 ∂δ = ε  ∂ 
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where ε = −L,T 1 and ε =F 1, according to the sign of the associated phase derivative, in the 
vicinity of xRes. The quality factors QL,T are qualified as longitudinal and transverse quality 
factors. For Lamb-type waves on a shell, we can also verify the relation : 
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The quality factor QF is therefore equal to an angular quality factor, denoted as Qy . 
Written at a resonance frequency xRes, the basis equation of the PGM leads to the following 
balance  

+ = +x y L TQ Q Q Q .    Eq. (14) 
In the following section, we show the interest to study the evolutions of these quality factors, or 
ratios depending on them, as in the case of plates. 
 
 
III VALIDATION FOR CYLINDRICAL SHELLS OF PLATE RESULTS 
 
 
In the case of plates, we obtain a relation linking the partial derivatives of the phase φ  of the 

reflection coefficient R  of the immersed plate, analog to Eq. (8). The advantage of such a 
geometry is the fact that there is no need to remove a background. Moreover, the factorized 
expression of R  allows us to obtain, in a much simpler way, the phase partial derivatives. We 
can also easily separate the phase contribution of the symmetric and antisymmetric waves. It 
can be analytically demonstrated that Qx is proportional to the spatio-temporal mean energy 
associated to both longitudinal and transverse standing waves in the thickness of the plate, Qy  
to the spatio-temporal mean energy associated to both longitudinal and transverse guided 
waves along the plate, and QL,T are respectively proportional to spatio-temporal mean energies 
associated to the longitudinal and transverse waves propagating in the plate. Therefore, the 
ratios QX/(Qx+Qy ) and Qy /(Qx+Qy ) can be interpreted as a stationary wave ratio (SWR) and a 
guided wave ratio (GWR). In addition, the ratios QL/(QL+QT) and QT/(QL+QT) can be interpreted 
respectively as a longitudinal wave ratio (LWR) and a transverse wave ratio (TWR). The study 
of the evolutions of the ratios QL,T/(QL+QT), when the dispersion curve of a given wave is 
followed, indicates the evolution of the polarization state of this wave. We can immediately 



conclude from the plots of those ratios if the wave considered is rather longitudinal or rather 
transverse. Moreover, it is shown that the energy velocity VE, which is, in most cases, identical 
to the group velocity VG, can be obtained straightforwardly by: 
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where ϕV  is the wave phase velocity. 
In the following, we verify the validity of these plate results for different Lamb-type waves 
propagating on the aluminum cylindrical shell, as those shown in Figure 3. In this figure, we 
have plotted the dispersion curves of antisymmetric modes A1,  A2 and A3 (dotted lines) and 
symmetric modes S0,  S1,  S2 and S3 (solid lines), in the reduced frequency range 10-500. The 
dispersion curves of the torsional waves are also exhibited (bold dashed lines). 
 

 
Figure 3: Plots of the dispersion curves of symmetric Lamb-type waves S0, S1, S2 and S3 (solid 

lines), of antisymmetric Lamb-type waves A1, A2 and A3 (dotted lines) and of torsional waves 
(bold dashed lines) (mode number n = 1) 

 
In Figure 4, we have plotted the evolutions of the longitudinal wave ratios QL/(QL+QT) of the 
different Lamb-type waves, following their dispersion curves. The ratio QL/(QL+QT) ranges from 
0 to 1: when it tends to 1, the wave is mainly longitudinal and when it tends to 0, the wave is 
mainly transverse. Beyond the first critical angle 1332θ = °(L)

C . , the longitudinal waves become 
evanescent, therefore, for all the Lamb-type waves the ratio QL/(QL+QT) tends to 0. By 
inspection of Figure 4, we can observe that for the modes whose cut-off frequencies are close 
to a multiple of cL/2d (longitudinal modes), d being the shell thickness,  the ratio QL/(QL+QT) 
tends to 1, at low incidence angles, as for the S2 and A3 modes. Conversely, the modes whose 
cut-off frequencies are close to a multiple of cT/2d (transverse modes) have a ratio QL/(QL+QT) 
which tends to 0, as for the A1, A2, S1 and S3 modes. When the incidence angle increases, the 
longitudinal wave ratios evolve according to the polarization state of each wave. We notice that 
all along their dispersion curves, the A1 and A2 modes remain mainly transverse modes and the 
S2 mode mainly a longitudinal mode. The mode A3 becomes progressively a transverse mode. 
The mode S3, which is mainly a transverse mode when the incidence angle ranges from 0° to 
nearly 10°, becomes longitudinal at about 12.5°. We can conclude that the study of the ratio 
QL/(QL+QT) is well suited to the determination of the polarization state of the Lamb-type waves. 
In Figure 5, we have plotted the evolutions of the energy velocities of the different Lamb-type 
waves, using Eq. (15). When compared to the evolutions of the group velocities, classically 
obtained by 

∂ω
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     Eq. (16) 

where ω  is the angular frequency and Kz is the z-component of all the wave vectors involved in 
the problem (the z-axis is parallel to the cylindrical shell axis), we obtain exactly the same 
curves. Figure 5 shows the validity of Eq.(15), on the one hand, and the equality of VE and VG 
for the Lamb-type waves studied, on the other hand. 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Angular evolutions of the QL/(QL+QT) ratios. 
 
 

 

 
Figure 5: Evolutions of the energy velocities. 

 
 
Conclusion 
 
 
As for plane geometries, the use of frequency, angular, longitudinal and transverse quality 
factors is an interesting tool to investigate the Lamb-type waves propagating along a cylindrical 
shell. At our knowledge, there is no other methods which can give the polarization of the waves 
propagating along a cylindrical shell. Moreover, the energy velocity can also be obtained by 
means of the quality factors and for the waves studied, the group and energy velocities are 
shown to be equal.  
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