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ABSTRACT 
 
 
Special composite materials could be modeled as an inhomogeneous medium where the 
density, sound velocity and attenuation of acoustical energy varies. This paper presents a 
theoretical study of sound wave propagation through media whose properties change along one 
of the coordinate rectangular axis, properties that remain constant in the plane orthogonal to 
this axis. The results were applied to obtain the reflection loss of a symmetrical inhomogeneous 
layer with a central homogeneous layer of thickness D and acoustic impedance ρ�c, adapted to 
the water impedance ρ0 c0 in both surfaces by a viscoelastic layer of thickness d, with doping of 
load particles with given density sound velocity and linear gradient attenuation. We assumed 
the following conditions: low particles concentration, low particle sizes as compared to the 
wavelength, normal incidence of the acoustic waves and thickness D>>d 
 
 
 
1. INTRODUCTION 
 
 

Wave reflection from an inhomogeneous layer of the simplest form was studied by 
Brekhovskikh [1] in the cases of transitional and symmetrical gradients of density and sound 
velocity. In some previous papers [2,3] we have deal with the reflection coefficient from a 
transitional layer with gradients of density sound velocity and absorption applied to the case of 
turbid waters and unconsolidated sedimentary layers. 

 
Robins [4] derives analytical solutions of the Helmoholtz equation for the reflection of plane 

acoustic waves from a layer of varying density between two homogeneous media. In another 
paper Robins [5] considers the transmission of an acoustic plane wave through a horizontally 
stratified fluid layer whose density and sound speed both vary continuously with depth. Other 
authors [6,7] study the reflection coefficient of a layered elastic seabed with progressive 
adaptation of acoustic impedance. 

 
A review of plane wave propagation through a layer with density and sound velocity 

gradient is given, and we introduce the effect of a sound absorption energy gradient when the 
layer is submerged into the water. In this way the Urick [8] suspension theory is considered. 



 
2. THE GRADIENT MEDIUM  

 
 
In a gradient medium where the number of included particles n(x) increases through the x 

axis, the density is written as 
 

  ρ(x)=��ρ1�β(x)+ρ2[1-β(x)]    ,    �����β(x)=n(x)Vp/V  (1) 
 
where ��ρ1� is the density of the particles, Vp the volume of one particle, V the total volume, and ρ2 
the density of suspended material. 
  

A model of sound propagation in a suspension based on scattering theory was first 
formulated by Urick [8]. Considering the scattered waves from a number of randomly spaced 
particles, the sound propagation through the composite material is characterized by the sound 
wave velocity and the absorption coefficient. At low frequencies the sound velocity could be 
expressed by the Wood equation [9] applied to a suspension (such as mineral particles in water), 
or to any medium lacking rigidity: 
 

    c(x) = 1/[ρ (x)χ (x)]1/2     (2) 
 
where χ is the total compressibility expressed by: 
 

    χ (x) =  β(x) χ1 + [1-β(x)] χ2    (3) 
 
χ1 is the compressibility of the particles and χ2 the compressibility of the agglomerate. At high 
frequency Hoven [10] predicts an increased velocity caused by the decrease in the effective 
density due to relative particles-suspending material movement.  
 

The absorption of sound in a suspension of particles was deduced by Urick,  provided the 
size of the particles a, is small compared to the wavelengt λ. The expression of the absorption 
coefficient α, if there are n(x) particles per unit volume is  
 

  2α = n(x) Vp k { (k3a3/3) + σ(µ-1)2/[σ2+(µ+ν)2]}    (4) 
 

where  k=2π/λ  is the wavenumber and   
 

  µ =ρ1/ρ2  ;     ν =0.5+(9/4ξa)  ;    σ=(9/4ξa)[1+(1/ξa)] ;      ξ=(ωρ2/2η)1/2  (5) 

 
The first of the two terms on the right of the equation (4) is the scattering loss produced by 

small rigid spherical particles free to move in the sound field, and represents a redistribution, 
rather than a dissipation, of the energy. The second term is a frictional loss due to the viscosity  η 
of the suspending material. When the particles are suspended into a solid medium the viscosity 
becomes zero, and the absorption coefficient remains only dependent on the scattering losses.  
 

This expression of the absorption coefficient shows a linearity with the number of particles 
valid only at low concentration where particle interactions can be neglected. High concentrations 
need a more complicate deduction, like the Biot theory [10] for a porous medium. 
 

At low frequency the limit expressions for the viscous attenuation in both Biot theory and 
suspension theory are very similar, having the same dependence on frequency and density ratio. 
The difference between the two expressions is in the relationship between particle size, porosity, 
and permeability. At low frequencies the suspension model gives the same attenuation as the Biot 
model if the latter uses adequate values of  permeability. In the extreme high frequency region, 
normally the Biot attenuation will be somewhat higher than the suspension model since the 
implied permeability in the suspension model is higher. On the other hand the suspension model 



give much too high attenuation values for concentration above a few percent, the Biot model gives 
the pleasingly correct results of zero viscous attenuation at 100% concentration. 
 
 
3. ACOUSTIC FIELD IN AN INHOMOGENEOUS MEDIUM.  
 
 

The fundamental equations of the acoustic field in an inhomogeneous medium have the form 
[11]  
 

δ p / δ t  =  - ρ c2  div v         
 

    δ v / δ t  =  - 1/ρ  grad p      (6) 
 
where  p  is the acoustic pressure, v is the particle velocity in the wave and c the velocity of sound 
propagation. In the general case  ρ and c are functions of position. The first of these equations is 
the equation of continuity and the second the Euler equation. Assuming harmonic time 
dependence,  δ /δt = -i ω, and eliminating v from equations (6), we obtain 
 

    ρ div [(1/ρ)  grad p] + k2 p = 0      (7) 
 

∇2 p + k2 p   -  (1/ρ) grad ρ grad p = 0               (8) 
   

Introducing in place of p a new potential φ, defined by 
 

    φ�= p /(�ρ1/2)      (9) 
 
after some transformations, we obtain the wave equation for φ  
 

    ∇2 φ + K(x)2 φ = 0     (10) 
 
where 
 

 K(x)2� = k(x)2  + (1/2 ρ(x)) ∇2 ρ(x) - (3/4) [1/ρ(x)) grad ρ(x)]2   (11) 
 

This wave equation can be integrated in several cases, for example when the density varies 
according to a exponential law and the complex wave number remains constant, or when the 
velocity of sound propagation varies according to   
 
    c(x) = c1 /(1+γx)1/2  
 

But a general solution of the wave equation (10) is not possible, nevertheless we solve the 
problem by imagining a layer consisting of a large number of thin, plane parallel, homogeneous 
layers in contact with one another . In passing from layer to layer, the properties of the medium 
change discontinuously. However, letting the thickness of the layers approach zero while their 
number approaches infinity, we obtain a layered-inhomogeneous medium with continuously 
varying parameters. 
 
 
4. REFLECTION BY AN INHOMOGENEOUS LAYER SUBMERGED IN WATER.  
 
 

Let us consider a one-dimensional inhomogeneous layer in the x-axis direction, with a 
thickness d, submerged in an homogeneous medium (water) with acoustic impedance  ρ0 c0. 
From this medium a plane wave sound beam at normal incidence strikes the boundary surface of 
the layer (see figure 1). 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Schematic description of the symmetrical layer 
 
 
 Now we can get the pressure of the incident and reflected waves in the water 
 

 Pi = A0 exp[ i(ωt-k0x)] ,  Pr = B0 exp[ i(ωt+k0x)]   (12) 
   
and the velocity of the particles 
 

vi =(1/z0) A0 exp[ i(ωt-k0x)] , vr = (-1/z0) B0 exp[ i(ωt+k0x)]  (13) 
 
where z0 =ρ0 c0  is the acoustic impedance, k  the wavenumber in the water and A0, B0 the 
complex amplitudes of these waves. 
 
 Assuming that a plane wave is propagated through the inhomogeneous layer divided into 
m homogeneous layers in contact, the pressure and the particle velocity in the n layers will be 
   

 Pin = An exp[ i(ωt-knx)]  , Prn = Bn exp[ i(ωt+knx)]  (14) 
 

vin =(1/zn) An exp[ i(ωt-knx)] , vrn = (-1/zn) Bn exp[ i(ωt+knx)]  (15) 
 
where zn=ρ(xn)c(xn)/(1+iαn/kn)  is the complex impedance of the layer n and kn=kn+iαn the 
complex wavenumber, where the imaginary part is the absorption coefficient of the nth layer. 
Since the absorption coefficient is dependent on the frequency, the complex impedance is also 
dependent of the frequency. 
 
 Finally, in the right half space of water only a transmitted wave travels in the positive x 
axis direction, with pressure and particle velocity 
 

 Pt = At exp[ i(ωt-k0x)] ,  vt =(1/z0) At exp[ i(ωt+k0x)]  (16) 
 
 There are two boundary conditions that must be satisfied for all times at all points on the 
m+1 boundaries between the layers: the acoustic pressures and the particle velocities on both 
sides of each boundary surface are equal. Applying this conditions we obtain a pair of equations 
at each n boundary given by the matrix expression 
 

x 

β 

Pi 

Pr 
Pt 

Prn 

Pin 



 
               An       An+1  

=  Tn          (17)  
               Bn       Bn+1  
 
where Tn is the matrix 
 
     (zn+1+zn)exp[-i(kn+1-kn)xn]       (zn+1-zn)exp[i(kn+1+kn)xn]  
   Tn =                      (18) 
      (zn+1-zn)exp[-i(kn+1+kn)xn]      (zn+1+zn)exp[i(kn+1-kn)xn]   
       
By applying m times the equation (17) we obtain the relation between the amplitude of the 
pressure on both sides of the inhomogeneous layer 
 
    A0                       At  
     =    T0   T1   ......  Tm-1    (19)  
     B0                   0  
  
 The complex reflection coefficient of the inhomogeneous layer will be determined by 
 
     R = A0/B0     (20) 
 

Now we apply this approximate method to some examples considered below in order to 
calculate the reflectivity frequency response and the shape of the reflected pulse by the 
inhomogeneous symmetrical layer submerged in water. 
 

 
 
Fig.2. Reflection loss of the symmetrical layer 
 
 



5. RESULTS AND CONCLUSIONS.  
 

We have considered a symmetrical layer of water with suspended solid particles: size 100 
µm, density 2650 kg/m3, compressibility 1.5x10-11 Pa-1, in a volume concentration of 10%. The 
reflection coefficient calculate according to above equations with eight sub-layers of thickness d 
coating the central layer of thickness D is shown in the figure 2.  

It can be concluded that the frequency response of the symmetrical layer show several 
arcs with minimum of reflection coefficient dues to the acoustic resonance :  

a) when the thickness D is equal to a multiple of the half wavelength. 
b) when the thickness d is equal to a multiple of the half wavelength.  

The number of arcs repeated in the figure between the highest maximum is the number of the 
sub-layers    

 
The absorption reduce the maximum-minimum amplitude. First those the central layer 

where the thickness is bigger and last those the lateral sub-layers. 
 
The frequency of the first minimum due to the sub-layers increase when the gradient 

increase (D/d increase).   
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