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ABSTRACT: In cardiology, there is a need for non-invasive assessment of regional myocardial 
function. Strain is a measure of relative deformation, and is currently being investigated for this 
purpose, together with its temporal derivative, the strain rate. The strain rate in the beam 
direction can be estimated from Doppler ultrasound velocity data as the spatial derivative. 
Finally, the strain can be estimated as the temporal integral of the strain rate data. This paper 
presents definitions of strain and strain rate, and illustrates how these values may be estimated 
by Doppler ultrasound. In addition, the current status and limitations of the technique are 
discussed, together with examples of potential clinical applications. 
 
 
INTRODUCTION 
 
Strain is a measure that can be applied to describe the relative deformation of objects, and was 
proposed for use in cardiology by Mirsky and Parmley [1]. Strain, and the temporal derivative 
strain rate, has been proposed for assessment of regional myocardial function. Currently, 
regional cardiac strain and strain rate can be acquired by magnetic resonance imaging [2], 
computed tomography [3] and gated single-photon emission computed tomography/positron 
emission tomography (SPECT/PET) [4]. Analysis of M-mode ultrasound data can also provide 
this information, and at a higher temporal resolution than the previous techniques. Strain by M-
mode can however only be acquired for a limited number of regions of the myocardium. 
Methods to estimate strain and strain rate directly from the received ultrasound signal, using the 
cross-correlation technique, have also been presented [5-6]. These methods are however 
computationally intensive and are not yet implemented in commercially available equipment. 
 
Color tissue Doppler imaging is a recent ultrasound technique that provides quantitative 
information on the velocity of the tissue [7]. Velocity samples from the whole field of view are 
available simultaneously. This allows for extraction of other parameters through spatial and 
temporal processing of the velocity data. Strain rate and strain are examples of such 
parameters. This paper gives an introduction to the physical concepts of these parameters and 
the signal processing methods involved in estimating them. 
 
 
DEFINITION OF STRAIN 
 
Strain is a measure of the relative change in size or shape. For a one-dimensional object, the 
only deformation that is possible is a change in length, as illustrated in Figure 1(a). If the object 



has an original length of L0 and lengthens or shortens to a new length L, the Lagrangian strain å 
(epsilon) is defined as 
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Notice that this is a dimensionless measure. The strain might also be expressed in percent, by 
multiplying the above equation with 100. Lengthening is represented by positive strain, while 
shortening is represented by negative strain. For example, a doubling of the length of an object 
corresponds to a strain of 1 (100%), while a shortening to half the original length corresponds to 
a strain of -0.5 (-50%). 
 
The strain definition in equation (1) depends only on the initial and final states. There is an 
infinite variety of ways to get from the initial to the final state. To model the strain history, one 
can write the Lagrangian strain as a function of time as 
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where L(t) is the instantaneous length at time t, and L(t0) = L0 is the initial length. Another way to 
model the strain history is to use the strain increment, defined as 
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where dt is an infinitesimal time increment. By integrating these strain increments from the initial 
time t0, the natural strain åN is found as 
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By comparing equations (2) and (4), one can see that the Lagrangian and natural strains have a 
fixed nonlinear relationship given by: 
 

( ) ( )( )1ln += ttN εε      or     ( ) ( )( ) 1exp −= tt Nεε . (5) 
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Figure 1. Illustration of (a) one-dimensional and (b) three-dimentional deformation. Each 
point in the object moves according to the displacement vector u. 

 



Strain can also be defined for a three-dimensional object. In this case, each point within the 
object can move in any spatial direction as illustrated in Figure 1(b). The Green or Lagrangian 
strain can then be defined using the displacement vector u = (ux, uy , uz) defined for each point in 
the original object as 
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where the indices i, j and k  can range over the values {x, y, z} representing the three-
dimensional space, and (xx, xy , xz) are the coordinates (x, y, z). 
 
For infinitesimal strains, the last term in equation (6) can be ignored. Expanding the equation for 
each coordinate then gives 
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where the strains in the left column are termed normal strains and the strains in the right column 
are termed shear strains* since they involve spatial deformations that vary along another spatial 
direction.  
 
 
DEFINITION OF STRAIN RATE 
 
Strain rate is the speed of deformation, and is defined as the temporal derivative of strain. It is 
denoted ε&  (epsilon dot): 
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The unit of strain rate is s-1 or equivalently 1/s†. Consider, for example, an object that is 
deformed to a strain of 1 (100%) and that the deformation requires 10 seconds. The average 
strain rate is then 1 divided by 10 seconds, resulting in 0.1 s-1, indicating that, on average, the 
object lengthens 10% every second. Notice that a positive strain rate means that the object is 
becoming longer, while a negative strain rate means that it is becoming shorter. 
 
Since the strain can be defined in various ways, as described earlier, the strain rate has a 
corresponding range of definitions. In particular, by taking the temporal derivative on each side 
of equation (4), the natural strain rate can be expressed as 
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where L’(t) is the temporal derivative of the instantaneous length L(t). This is the strain rate that 
will be discussed in the rest of this paper. Notice that the strain rate is independent of the initial 
length L(t0). 
 

                                                 
* The value inside the parentheses is termed engineering shear strain. 
† Note that the unit Hz is not used, since the deformation does not necessarily have a cyclic nature. 



 
ESTIMATION OF STRAIN RATE AND STRAIN 
 
The motion of the tissue is available at a high temporal resolution using tissue Doppler imaging. 
It is the mean velocity component along each ultrasound beam that is measured. A non-
deforming (stiff) region, moving in the beam direction, will have equal velocity in every point. If 
the velocities vary along the beam, it must mean that the region is being deformed.  
 
 
Relation between Strain Rate and Velocity 
 
To see how the velocities are related to the strain rate, consider the small tissue segment in 
Figure 2. Assume that, at a given time instant, the velocities vary linearly over this segment as 
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Notice that the slope can be expressed as the spatial velocity gradient a = dv/dx. Furthermore, if 
x1 and x2 are the positions of the end points of the segment, the instantaneous length is 
L = x2 - x1. The instantaneous change in length is then 
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Inserting this into equation (9) it can then be seen that the natural strain rate is in fact the spatial 
velocity gradient 
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Notice that the strain rate may vary over time. Also note that it is independent of the 
translational velocity a0. 
 
 
Estimation of Strain Rate 
 
As shown in the previous section, to estimate the strain rate, it is sufficient to estimate the 
velocity gradient. The simplest estimate for the velocity gradient relies on only two velocity 
samples: 
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Here v1 and v2 are velocity estimates from two sample volumes spaced a distance Äx from each 
other along the ultrasound beam. This estimate assumes that the velocity varies linearly within 
the region defined by Äx. Notice that Äx does not need to be identical to the instantaneous 
segment length L(t) used in the previous section. 
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Figure 2. Illustration of a tissue segment at a specific time instant. 



 
Estimation of Strain 
 
Strain rate is defined as the temporal derivative of strain. The strain is therefore the temporal 
integral of the strain rate: 
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Notice that strain depends on the definition of the start and end times of the integration, t0 and t. 
Since it is the natural strain rate that is integrated, the result is the natural strain. The 
Lagrangian strain can be found using the conversion formula in equation (5). 
  
 
LIMITATIONS 
 
Being estimated as the spatial derivative of the velocities, the strain rate is highly dependent on 
the quality of the velocity data. Small variations or errors in the velocity data will produce large 
errors in the strain rate estimates. This may be overcome by increasing the sample distance Äx 
in equation (13) and by performing spatial averaging of the strain rate estimates. The cost is 
reduced spatial resolution. 
 
As it is only the velocity component along the ultrasound beam that is available, only the strain 
rate in the beam direction can be calculated. Since the tissue can be considered 
incompressible, a deformation in one direction will always be compensated by opposite 
deformations in other directions. The result is that the strain rate estimates will be more angle 
dependent than velocity estimates. It is therefore important to attempt to align the ultrasound 
beam as close to the desired deformation direction as possible. Notice, however, that as long as 
the alignment is perfect, it is the exact strain rate that is measured, irrespective of the other 
strain rate components. 
 
When integrating the strain rate samples to estimate the strain, ideally the strain rate samples 
should originate from the exact same location in the tissue. This may be difficult to achieve in 
practice when the tissue is moving, both within and outside the image plane. As a consequence, 
it may be necessary to use strain rate samples from slightly different parts of the tissue in the 
integration process. This may result in an error in the strain estimate. In addition, if the angle 
between the ultrasound beam and the tissue is changing during the same time, for example due 
to twisting of the tissue, it is not the exact same strain rate components that are being used. 
This will also add to the error. As a result, there may be a drifting of the strain curve. For a cyclic 
deformation, as in the heart muscle, the drifting can however be compensated for, since it is 
known a priori that the strain at the end of the cycle should be zero. 
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Figure 3.  Estimated strain rate (left panel) and strain (right panel) in a region of interest in the 
interventricular septum of a healthy volunteer (solid line) and a patient with an acute apical 
infarction in the region (dashed line). 



CLINICAL EXAMPLES AND POTENTIAL APPLICATIONS 
 
The solid lines in Figure 3 show the extracted strain rate and strain from a region of interest in 
the interventricular septum of a healthy volunteer during one cardiac cycle. An apical view was 
used when acquiring the data, so the ultrasound beam was in the longitudinal direction through 
the muscle. Therefore, it is the longitudinal strain rate and strain that is estimated. During 
systole, there is a negative strain rate and a decrease in strain, indicating that the muscle 
shortens in the longitudinal direction. In diastole there are several phases with positive strain 
rate and increasing strain, indicating a lengthening of the muscle. 
 
The dashed lines in Figure 3 show the extracted strain rate and strain from a region of interest 
in the interventricular septum of a patient with acute ischemia. As seen, the systolic shortening 
is reduced, indicated both by a reduced negative systolic strain rate, and a reduced strain at 
end systole (approximately at 350 ms). Notice also the post-systolic shortening.  
 
Current topics in clinical strain rate imaging research include assessment of regional myocardial 
function [8] and viability [9] using the peak systolic strain rate and strain. There has also been 
an interest and debate about the potential usefulness of the post-systolic shortening as a 
possible marker of viability [10]. Finally, strain rate imaging has also been used to assess 
diastolic function [11]. 
 
 
CONCLUSIONS 
 
The strain rate can be estimated from tissue Doppler velocity data as the spatial velocity 
gradient, and the strain can further be found as the temporal integral of the strain rate. These 
parameters are potentially useful tools in the quantification of regional myocardial function. 
However, the clinical relevance of the parameters is not yet well established.  
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