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ABSTRACT 
 
This paper analyzes a time-domain method to compute the ultrasonic field radiated by 
broadband transducers when the acoustic field impinges interfaces. As first step, the impulse 
response velocity potential is determined at the interface using the Rayleigh integral. In a 
second step, the transmitted field is calculated considering that every elementary portion of the 
interface radiates a hemispherical wave. The aim of the work is to determine a compromise 
between the accuracy of the method and the computation time, having the temporal sampling of 
the transmitted signal and the spatial sampling of the aperture and the interface as variables. 
 
 
 
INTRODUCTION 
 
The investigation of the acoustic field produced by a broadband transducer through interfaces is 
an important tool for nondestructive evaluation by ultrasound, because in most of the cases 
liquid or solid wedges of diverse geometry exist between the transducer face and the structure. 
 
Different methods have been developed to study the spatial-temporal characteristics of acoustic 
fields radiated by broadband transducers. One of these methods uses the spatial impulse 
response to determine the time-dependent pressure at a spatial point [1]. The starting point is 
the Rayleigh integral based on Huygens' principle from which, each point of a travelling 
wavefront can be considered as a secondary source of hemispherical disturbance. The acoustic 
field results from the superposition of hemispherical waves radiated by infinitesimal areas from 
the transducer. This method based on the Rayleigh integral is also used for calculation of 
pressure fields through interfaces [2] – [4]. 
 
In this paper a computational method is proposed, which is based on the spatial impulse 
response [1] and on the discrete representation computational concept [5]. Both the aperture 
transducer and the interface are considered as a finite number of elementary sources, each 
emitting a hemispherical wave. 
 
In order to illustrate the application of the computational method to determining the acoustic 
field through interfaces, the radiation from a circular piston is initially considered in this work. 
Furthermore, a virtual interface in front of the circular piston is used to simulate the transmitted 
field and to compare it with an exact solution, considering the medium 1 equal to the medium 2. 
The exact solution of a circular piston mounted within an infinite baffle radiating into a medium is 
well-known [6] and will not be described here. The computational method is described for an 
arbitrary aperture in section. 
 
 



THEORY 
 
Consider an aperture with an arbitrary plane surface Sa embedded in an infinite rigid baffle that 
is in contact with a medium 1 (Figure 1). The acoustic pressure field radiated in an isotropic 
medium can be calculated in the time domain from the Rayleigh integral [1]: 
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Figure 1. Geometry used to calculate the acoustic field through a plane interface. 

 
The interface between media 1 and 2 is approximated to a finite interface, large enough to 
intercept the radiated field. Now considering that the acoustic pressure at this interface is known 
from equation (1), it is possible to calculate the refracted acoustic field applying the Rayleigh-
Sommerfeld integral to the interface considering that it is embedded in an infinite soft baffle [7]: 
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where ),( trp P

r
 is the transmitted acoustic pressure through the interface; 2c  is the propagation 

velocity of medium 2; iPr  is the distance from the elementary area idS  located at ir
r

 to the field 

point located at Pr
r

; ),cos( nriP

rr
 is the cosine of the angle between the normal vector n

r
 and the 

vector iPr
r

; Si indicates the surface of the finite interface; and ),( trp i

r
 is the defined pressure in 

each point of the interface.  
 
The solution for ),( trp P

r
 presented in equation (2) can be simplified, assuming that the aperture 

is a uniform piston. Substituting equation (1) into (2), and after some calculations it follows that 
the transient field is determined by a temporal convolution between the excitation signal )(tv  

and the velocity potential impulse response ),( trh P

r
: 
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where the symbol * indicates the time convolution, and the velocity potential impulse response 
at the point P is defined by: 
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where the velocity potential impulse response at the interface due to the aperture results in: 
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In this work, computations are divided into two parts, using the approach proposed by 
Piwakowski valid for an arbitrary aperture [5]. In a first step, after dividing the aperture into a 
number of elementary areas, the velocity potential impulse response ),( trh ia

r
 is calculated from 

equation (5) at the whole finite interface, which has also been approximated by a number of 
elements of small areas. In a second step, the velocity potential impulse response ),( trh P

r
 is 

calculated from equation (4) and the transmitted pressure field is obtained applying equation (3) 
at every field point P.  
 
The time-averaged discrete impulse response [5] is the applied computational solution used to 
calculate the velocity potential impulse responses at the interface and at the point P, 
respectively, equation (5) and (4). The temporal sampling t∆  is used constant during the 
calculation of the impulse responses, but the spatial samplings could be different between the 
aperture aa yx ∆=∆  and the interface ii yx ∆=∆ . 
 
 
RESULTS 
 
In this section an implementation of the computational method will be presented for the case of 
a planar circular piston of radius 9.5mm radiating into a rectangular virtual interface of 
dimensions LL × , as shown in Figure 2. An angular orientation α and an axial distance Z 
define the position of the interface relative to the referential zxO  located at the center of the 
piston. All simulations were carried out taking both media 1 and 2 as water to permit a 
comparison with the exact solution of a piston radiating in water. An excitation signal of 1-MHz 
sine-wave single cycle was used (λ=1.5mm). The virtual interface was always located at the 
near field with Z=15mm and L=25mm. 
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Figure 2. Illustration of circular piston radiating into a virtual interface. 

 
Figure 3 compares the exact pressure responses with the respective model approach at 
different field points. Figure 3-a shows three different near-field points - mm20=z - at the 
acoustic axis and at 10 and 20 mm off axis. Figure 3-b shows the same results but at far-field 
conditions - mm60=z -. The model responses were calculated with mm1.0=∆tc , 

mm25.0=∆=∆ ia xx , and °= 0α . In all the cases the presented approach gives very good 
results except the P3 case which, due to the geometry, is outside the “shadow” of the interface   
-Figure 4-.  
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Figure 3. Comparison of exact (____) and approached (K ) pressure responses to the regions:  

(a) near field in mm20=z , and (b) far field in mm60=z . 
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Figure 4.The "Shadow" of the interface and the six positions analyzed in Figure 3. 



To give an indication of the approach accuracy, the error respect to the exact solution of the 
pressure responses has been calculated for every signal in the time domain: 
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where sE(i) is the signal computed by the exact solution, sC(i) is the signal computed by our 
method and N the number of samples. The error has been calculated for points at mm20=z  

and mm60=z  which are in the range mm13≤x . Figure 5 shows the maximum relative error 
found when varying the main computational parameters for three cases: (a) 

mm25.0=∆=∆ ia xx , (b) mm25.0=∆ ax  and mm1.0=∆tc , and (c) mm5.0=∆ ax  and 

mm1.0=∆tc . As a general conclusion the error at near-field is bigger than at far-field 
conditions. Furthermore, it is noticed that an adequate temporal sampling improves the results. 
In relation with the spatial sampling, the precision of the computational method is limited by the 
number of elementary areas used to divide the aperture and the interface. To have an idea 
about the meaning of the error concept used, the errors between the approached pressure 
responses and the exact solution are displayed in Figure 3. 
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Figure 5. Maximum error e (%) of the pressure responses calculated at mm20=z  (∗) and 

mm60=z (o), for the range mm13≤x and the computational parameters: (a) 
mm25.0=∆=∆ ia xx , (b) mm25.0=∆ ax  and mm1.0=∆tc , (c) mm5.0=∆ ax  and mm1.0=∆tc . 

 

 
Figure 6. Simulated fields in he x-z plane. Comparison between the exact solution and three 

different computational cases (-1-, -2- and -3-) as described in Figure 5. 
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Finally, 2D simulated fields in the x-z plane have been calculated. Figure 6 is a comparison 
between the exact solution and three different computational cases. The cases are called -1-,    
-2- and -3- and the corresponding computational parameters are described in Figure 5 using 
ellipses. It can be observed that the main differences appear in the near-field region and when 
rough spatial sampling is used. Nevertheless big difference exists in computation time. For 
instance, using a 550 MHz Pentium III computer, case -1- takes 85 minutes whereas case -3- 
takes only 6 minutes. 
 
 
CONCLUSIONS 
 
Based on the impulse response and the discrete representation methods, a computational 
approach to calculate the acoustic pressure field through a plane interface by an arbitrary 
aperture has been developed. A closed-form analytic expression of the velocity potential 
impulse response has been obtained to describe the transmission through the interface. The 
number of elementary areas used to divide the aperture and the interface limits the precision of 
the computational method. The difference of the exact solution and its approximation can be 
minimized by means of an adequate choice of the temporal sampling. This method can be 
easily extended to arbitrary interfaces of complex geometry to predict the transmitted field. 
Furthermore, it permits the use of the transmission coefficients through interfaces. 
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