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ABSTRACT 
 
Under consideration is condition monitoring of thin-walled structures, which suffer fatigue failures 
resulted from high-level wide-band loads in acoustic frequency range. Destructiveness is estimated 
with the aid of spectral characteristics of structure parameters measured in checkpoints. It was 
shown that Kohonen networks made it possible to diagnose a structure when neither all possible 
types of destruction nor the corresponding changes induced in the spectral characteristics were 
unpredictable in advance. The ways of reduction of input data dimension to improve the learning 
and operation network quality are described. The system of statistical goodness-of-fit tests for 
estimating the effectiveness of network functioning is proposed. Prediction of damage probabilities 
is carried out on the base of accumulated observations. Probability dynamics is described by 
continuous time, discrete state Markov processes. The method of minimum chi-square is used to 
identify unknown model characteristics by means of comparison of observed and expected 
histograms presenting damage distributions at the given time points.  
 
 
 
INRODUCTION 
 
Engine jet noise, pressure fluctuations in turbulent boundary layer and other high-level acoustic 
loads result in fatigue failures of aircraft structures and unacceptable level of on-board equipment 
damages. These problems have been attracting attention of researches since 50-s after numerous 
acoustic fatigue failures of aircraft resulted from increase of airspeed and change of engine types. 
Last years, the interest to this problem became stronger owing to development of new generation of 
supersonic airplanes and hypersonic flight vehicles. 

Acoustic loads are the most dangerous for thin-walled aircraft structures. They are wide-
band (up to 5000 Hz) random process, with level varying from 145 to 170 dB in different points of 
aircraft surface.  

Condition monitoring of thin-walled aircraft structures, which suffer fatigue failures, with the 
aid of neural networks is under consideration in this paper. Solution of this problem gives the 



opportunity to cut down expenses for aircraft maintenance, raise the reliability of destruction 
monitoring and simplify the routine maintenance. 
 
 
 
MODELS AND METHODS 
 
According to the described approach, destructiveness is estimated by the changes of distributed 
structure stiffness, which is, in its turn, recognized by the qualitative changes of normalized 
parameter spectral characteristics measured in checkpoints. Normalizing makes it possible to 
analyze only qualitative structure response and not to take into account the level of load. 

Such an approach based on the estimation of averaged structure properties seems more 
promising than the search of separate cracks [1,2], which are not always accessible for direct 
observation and hard to predict because of considerable dispersion in their evolution. The use of 
secondary characteristics (such as spectra) instead of time-domain realizations as check data is 
caused by the following facts:  

• spectra keep sufficient amount of useful information about the process under study; 
• spectra need less memory in digital form of representation; 
• spectra may be easily and quickly computed with controlled accuracy. 
Components of the technology used for monitoring of fatigue failures are presented in Figure 1. 
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Figure 1.  Components of the technology used for monitoring and prediction of fatigue 
failures. 
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Since all the damages are not assumed to be known before diagnostics, it is impossible to 
apply ordinary neural networks with supervised learning for their detection. Self-organizing feature 
maps, or Kohonen networks [3, 4], for which output variables are not required, may be useful in this 
case. A self-organizing feature map may be used as a detector of new events: it informs about input 
case rejection only if this case differs from all labeled radial units significantly (more than a given 
acceptance distance for radial units).  Simultaneous application of different networks duplicating 
each other makes it possible to improve the recognition quality [5]. 

When all variants of system damages are known before, the problem is essentially simpler. 
One can employ traditional neural networks with supervised learning (perceptrons, radial basis 
function networks, etc.). The output of a classifying network is represented with the aid of a nominal 
variable according to the scheme “One-of-N”. In both approaches, frequency ranges are used as 
input variables and ordered lists of values of normalized power spectra densities at their centers – 
as observations. So, each input observation represents a separate spectrum. 

If the number of accountable frequency ranges is such a great one that it not only degrades 
network performances but excessively enlarges the size of training data [6], problem dimension 
may be reduced. Some hypothetical latent variables, which explain initial data fluctuations with 
acceptable errors, are thereto determined and used later as input data. Either factor or principal 
component analysis [7] may be applied here. In case of factor analysis, latent variables (factors) are 
selected to obtain the best (from the viewpoint of a given criterion) approximation of correlation or 
covariance matrices calculated for observed variables. In case of principal component analysis, a 
subspace of smaller dimension laying on the eigenvectors of initial correlation (covariance) matrix 
and explaining sufficiently great part of total observed variance (as a rule, more than 80%) is 
determined.  

To get stable output of factor or component analysis applied to power spectral densities 
considered here, mean values for each observed variable should be kept fixed (for example, they 
may be equal to zero) at any number of cases. It is convenient to use the following formal 
technique: to double the given set of cases before calculation of latent variables supplementing it 
with initial power spectral densities signed with “minus” (so as each value of an observed variable 
has the double yielding zero sum with itself) and, then, to carry out the mentioned analysis for these 
extended data. 

Reducing problem dimension makes it possible to decrease the number of units in 
recognizing networks and yields significant advantages: smaller networks need smaller samples for 
their training, have better ability for generalization, etc. Reducing dimension is an alternative to 
immediate selection of input data on the base of sensitivity analysis. It not only eliminates the 
information redundancy but also reveals internal dependencies between variables. 

Estimations of classification quality, which are based on the percentage of correct cases in 
the verification set only, may not be considered as acceptable ones since they do not take into 
account amount of sampling and differences in the output resulted from training and verification 
sets. More reliable estimations based on statistical goodness-of-fit tests may be carried out when 
the following criteria are verified [8]: 

1) hypothesis of absence of statistically significant differences between predicted and 
observed output obtained for the verification set, 

2) hypothesis of absence of statistically significant differences between classification carried  
out on the training and verification sets, 

3) equivalence hypotheses for distributions of different input data types in training and 
verification sets. 
Prediction is carried out on the base of accumulated observations. Probability dynamics is 

described by continuous time, discrete state Markov processes. The given damage types are 
considered as separate discrete states in which the analyzed system has some probability to find 
itself. In due course transitions between the states are the case.  

The model to describe dynamics of these transitions is represented by a graph in which 
nodes (depicted as rectangles) correspond to the states, branches (depicted as arrows) correspond 
to transitions. The process of fatigue failure accumulation may be imagined as a random walk along 
the graph from one state to another following the arrows. Time is supposed to be continuous. State-
to-state transitions are instantaneous and take place at random time points. 



It is assumed that state-to-state transitions (corresponding to each branch of the graph) 
meet the properties of Poisson’s flows of events.  
 The method of chi-square minimum is used to identify independent model parameters 
(transition flow rates) on the base of observation results. For the problems under consideration, it 
usually yields estimations, which are close to ones of the maximum likelihood method.  According to 
the presented approach, this statistic is minimized at the specified time points in which observed 
data are available. 
 Obtained values of free parameters are considered as fatigue failure characteristics, which 
have become apparent during observations. 

The same criteria may be also used to compare different Markov models for selecting their 
optimal variant.   
 
 
 
EXAMPLE OF PREDICTION 
 
Prediction results are demonstrated by the example of fatigue failures of an air-intake panel. 
Recognized are the following structure conditions: OK - safe structure; Center – 1 weld in the panel 
center has been damaged; Left - 2 welds in the left part of the panel have been damaged; Right - 2 
welds in the right part of the panel have been damaged. 

The diagram presented in Figure 2 may be used to estimate damage probabilities. It 
represents mutual coupling between different damage types. All the damages that have not been 
described before correspond to the state Unknown. Distribution of flow rates takes into account the 
system symmetry.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Probabilities of being in different states as functions of time are defined by the following set of 
Kolmogorov ordinary differential equations ( ip  is probability of being in state No i ): 
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To integrate these equations, one has to assign initial conditions: 
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Figure 2. Markov model to describe mutual connections between different damage 
types. 
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Final values of state probabilities 610 ppp ,...,,  determined by numerical integration at the 
specified time points may be considered as functions of free parameters. These values agree with 
an exact solution to the precision of the numerical integration, which may be set arbitrarily small.  

Statistical criteria make it possible to optimize the model selecting that sort of ratios between 
flow rates, which yield the best matching with the observation results. Corresponding estimations for 
different variants of the model presented in Figure 2 are shown in Table 1. The chi-square criterion 
is used here to compare different variants of models, viz.: goodness-of-fit measure for the full model 
(model 1) is confronted with the analogous characteristic of reduced models. Since difference in the 
values of chi-square criteria for the full and reduced models is itself distributed as chi-square, it is 
used to figure out whether simplifications are statistically significant or not [5, 8]. Table 1 shows that 
models 1 and 2 are the best fitted with regard to observations. Model 2 is preferable as it is simpler.  

 
Table 1. Model fitting for damage distribution after 2000 exploitation hours (the model is 

presented in Figure 2; NS –difference with model 1 is not statistically significant, S –difference 
with model 1 is statistically significant) .  
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1 λλ0, λλ1, λλ2, λλ3, λλ4 
(all the flow rates are 
independent) 

0.144 1 0.705 -1.9 - - - 

2 λλ0, λλ1, λλ2=λλ3, λλ4 0.144 2 0.931 -3.9 0.000 1 0.999 (NS) 
3 λλ0=λλ1, λλ2=λλ3, λλ4 9.416 3 0.024 3.4 9.273 2 0.010 (S) 
4 λλ0, λλ1, λλ2=λλ3=λλ4 7.142 3 0.068 1.1 6.999 2 0.030 (S) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Predicted probabilities of being in different system states (as functions of time) are given in 

Figure 3. 

Figure 3. Predicted probabilities of being in states P0, P1, …, P6 as functions of time. 
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It was shown in paper [8] that Markov models under the given inverse problem formulation 
are used as specialized neural networks. In this case states are analogues of neurons, activation 
functions are expressed via differential equations, transition flow rates are used as weights, and 
state probabilities are inputs and outputs of network units. 
 
 
 
 
CONCLUSIONS 

 

1. Analysis of spectral characteristics of parameters measured in checkpoints with the aid of 
neural networks makes it possible to estimate the character of fatigue failures of thin-walled 
aircraft structures suffered acoustic loading. The use of spectral characteristics saves on 
computer resources keeping sufficient amount of useful information about the process under 
study. 

2. Kohonen networks (self-organizing feature maps) make it possible to diagnose fatigue failures 
in situations where neither all possible damage types nor corresponding changes induced in 
observed spectral characteristics are not predictable beforehand.  

3. If all types of system damages are known beforehand, traditional neural networks with 
supervised learning (perceptrons, radial basis function networks) may be used for diagnostics. 

4. Reduction of problem dimension (with the aid of principal component analysis, etc.) improves 
characteristics of network training.  

5. Presented statistical goodness-of-fit tests are necessary to estimate obtained network quality.  
6. Parametric models described by continuous time, discrete state Markov processes make it 

possible to predict probabilities of damage appearance as functions of time. Prediction is 
carried out by means of calculation of transition flow rates, which yield solutions best-fitting the 
observation data, and integration of Kolmogorov set of differential equations. These models 
under the given inverse problem formulation are used as specialized neural networks.  
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