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ABSTRACT 
 
The IEEE Standard on piezoelectricity defines the electromechanical coupling factor (k) in static 
conditions as the ratio between the energy converted from electric to mechanic form or vice 
versa.  Recently, the authors have shown that this definition can be extended also to dynamic 
cases, by analysing a rod piezoelectric element by means of a 1D distributed model. In this 
work, the dynamic coupling factor is computed for cylinder shaped piezoceramic elements of 
different aspect ratios by using classical 1D models and a 3D analytical model. It is shown that it 
can be correlated to the effective electromechanical coupling factor (kef f)  for any aspect ratio.  
 
 
INTRODUCTION 
 
The electromechanical coupling factor k  is a very useful parameter of piezoelectric materials 
because it synthetically characterizes the conversion from mechanical energy to electrical 
energy and vice versa. Several different definition of he k  factor have been given in literature. 
The k ij, also called the material coupling factor (kmat) [1], refers to a fundamentally one 
dimensional geometry of the piezoceramic element and it is easily related to the energies 
involved in a dynamic transformation cycle. The effective coupling factor keff refers to an 
oscillating specimen of any geometry, but it is not clear in literature how it is related in a 
dynamic transformation cycle. Another definition of the coupling factor was given by Berlincourt 
et al. in their fundamental work on piezoceramics [2].This definition can be applied in static and 
dynamic situation and it can be computed, in principle, for any geometry of the piezoceramic 
element but, it does not a precise physical meaning and its relation with keff , which among all k  
factors is the only one that can be measured, is not clear.  
In a recent work [3] the authors have shown that like in static situation also in dynamic situation 
it is possible to assign to the k  factor the physical meaning of square root of ratio of energies. In 
this work, the dynamic coupling factor is computed for cylinder shaped piezoceramic elements 
of different aspect ratios by using a 3D approximated analytical model [4]. 
 
 
DEFINITIONS OF THE K FACTOR 
 
The IEEE Standard on piezoelectricity [5] defines the static piezoelectric coupling factor as the 
square root of the ratio between the energy density converted from an electrical to a mechanical 
form wc and the total energy density w involved in a transform cycle of a piezoelectric element:  
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The total energy density stored per unit volume by the element can be expressed by [6]:  
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In the general case this expression is rather complicate; anyway if one dimensional geometries 
are concerned, the constitutive equations are simplified and this definition allows to give a 
physical meaning to the k  factor. 
Berlincourt defined the coupling factor as [2]: 
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where Ue, Ud and Um are the elastic, dielectric and mutual energy densities, respectively. 
Even if it is possible to give a physical meaning to the quantity in (3), this energy density are not 
correlated to any energy conversion cycle; as a consequence the physical meaning of this k 
factor is different from that given in equation (1). However in the static case and for one 
dimensional geometries the Berlincourt definition gives the same result of the k  factor defined 
by (1), and it can be applied also in the dynamic case, even if it becomes frequency dependent.  
The effective electromechanical coupling factor as defined as [1]: 
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where fs and fp are the series and parallel frequencies of the equivalent lumped constants circuit 
which describes the piezoceramic specimen at each resonance frequency. 
For low keff values the relation between keff  and kmat is : 
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while for high keff values this relation is plotted in [1,fig.9] for the main vibration modes. 
The definition of the k  factor as a square root of ratio of energies was extended to dynamic 
cases in [3]; for a lossless piezoelectric specimen insulated both electrically and mechanically 
the dynamic coupling factor kW is defined as: 
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This definition is formally identical to equation (1) because the total energy in a cycle coincides 
with the kinetic energy wk  and the converted energy is the electric energy.  
For distributed systems both we and wp are frequency dependent and the dynamic coupling 
factor must be evaluated at the parallel resonance frequency: 
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1D MODELS 
 
Figure 1 shows a piezoceramic rod (a) and a piezocermic disk (b), both poled in z-direction and 
with the flat surfaces electroded. These geometries can be used for describing three important 
one dimensional vibration modes: the ROD mode (fig.1a), the THICKNESS and the RADIAL 
mode(fig.1b). In the following the dynamic coupling factor kW will be computed and compared 
with the keff for each of these modes. 
 
Rod Mode  
 
The constitutive equations for the rod mode are [2]: 
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and the wave equation is: 
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By imposing stress-free boundary conditions and assuming a sinusoidal electrical excitation 

0
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where 331/ Dv sρ= is the wave propagation along the z direction, /k v ω=  and klθ = .The 

expressions of the kinetic energy density kw  and of the electric energy density ew are [3]: 
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The limit of the ratio between these two energies when pω ω→ (i.e. θ π→ ) after some 

manipulations is: 
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Figure 2a shows the behaviour of wk and we versus frequency for a PZT5A (Morgan-Matroc) 
specimen [7]. 
As it can be seen at the parallel frequency fp both these energy densities tend to infinity. The 
ratio between these two energies, as well as the coupling factor kU versus frequency is plotted 
in figure 2b: even if the behaviours of these functions are completely different, they assume the 
same value at the parallel resonance frequency fp= f0 . This value slightly differs the keff value in 
agreement with the plot given by Berlincourt in [1,fig.9]. 
 
Thickness Mode 
 
The constitutive equations for the thickness mode are [2]: 
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These equations are formally identical to eqs.8 and the wave equation is identical to eq.9. 
Therefore the results will differ from the previous ones only for some constants. We have: 
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The limit of the ratio between these two energies when pω ω→ (i.e. θ π→ ) after some 

manipulations is: 
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Figure 3 shows the behaviour of wk and we (a), and their ratio and kU (b). The same 
considerations as those made for figure 1 hold. 
 
Radial Mode  
 
The constitutive equations for the radial mode are [5]: 
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By imposing stress-free boundary conditions and assuming a sinusoidal electrical excitation 

0
j t

zD D e ω= , the solution of the wave equation is: 

tj
r e

kaJ
krJ

Dj
u ω

ω )(
)(1

1

1=  
 
(20) 

where 
( )












++




 −
−= p

p
pp

p

p e
c

kaJ
kaJkakaJ

c
e
a

D
33

2

31
12

1

10
11

31

33 2
)(

)()(
ε

επ
, pvk /ω= , ρ/11

pp cv = . 

The expression of the voltage V is: 
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The kinetic and the electric energy densities are computed by means of the follow equations: 
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Due to the presence of the Bessel functions the energy densities wk and we have no simple 
analytical expression; they are plotted versus frequency in figure 4a. Also for the radial mode 
both the energies tend to infinity at the parallel frequency fp. Their ratio is plotted in figure 4b; 
the kw value obtained is less than the keff value. 
 
 
3D MODEL 
 
In order to evaluate the dynamic coupling factor kW for a cylinder shaped piezoceramic of any 
aspect ratio, an approximated 3_D model recently proposed by the authors [4] was used. This 
model was derived by assuming as solution of the wave equation system two orthogonal wave 
functions, i.e., the coordinate axes r and z are pure mode propagation directions (ur=ur (r) and 
uz=uz (z). As a consequence of this choice, the boundary conditions are not satisfied in every 
point of the external surfaces but only in an integral way. The comparison with results from one 
dimensional models have shown a very good agreement for rod and thickness mode, and an 
error of about 5% for the resonance frequency of the radial mode. 

By imposing stress-free boundary conditions and assuming 0
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zD D e ω= , we have: 
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Where the expressions of the v1, v2 and v3 can be found in [4]. The kinetic and electric energy 
densities can be now computed as: 
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The dynamic coupling factor kW was computed for several aspect ratios G=2a/l. The results are 
shown in figure 5, where also the keff computed with the 3D model as well as with a FEM 
simulations, carried out with the code ANSYS 5.7, is shown. As can be seen the three curves 
present a very similar trend, even if for high values of G (radial mode) a greater difference 
between kW and keff can be observed. 
 
CONCLUSION 
 
In this work the dynamic coupling factor, defined as the square root of the ratio between the 
electric and dynamic energy densities, has been computed and compared with the effective 
electromechanical coupling factor for the main one dimensional geometries of cylinder shaped 
piezoceramic elements, and a strong correlation between them was observed. The comparison 
has been then extended to cylinder shaped piezoceramics with different aspect ratios by using 
an approximated 3D model. Also in this case a correlation between the two coupling factors 
emerged, even if, due to  the approximations at the basis of the 3D model, their values are 
much different than those obtained with 1D models for high diameter to thickness ratios. 
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Figure 1: Piezpceramic cylinder shaped specimen: a) ROD, b) DISK. 
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Figure 2: ROD mode; a)Energy densities wk and we, b) we/ wk and kU 
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Figure 3: THICKNESS mode; a)Energy densities wk and we, b) we/ wk and kU 
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Figure 4: RADIAL mode; a)Energy densities wk and we, b) we/ wk  

0 2 4 6 8 10 12 14 16 18 20 22
0,40

0,44

0,48

0,52

0,56

0,60

0,64

0,68

0,72

0,76

0,80

RADIAL

ROD

0.476

0,53

0,564

 

 

 keff 3D MODEL

 keff ANSYS

 keff 1D MODELS

 kw 3D MODEL

k

G 

 
Figure 5: kW and keff versus G 


