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ABSTRACT 
 
In the IEEE Standard on piezoelectricity the electromechanical coupling factor is defined in 
static conditions as the ratio between the converted and the total energy involved in a transfor-
mation cycle (kmat). In this work we show that this definition can also be extended to dynamic 
cases: by means of 1–D models we demonstrate that, for loss less piezoelectric elements vi-
brating in the rod (longitudinal) or width (transverse) mode, the k  factor can be defined as the 
square root of the ratio between the converted electric energy and the kinetic total energy; the 
obtained results are proportional to the appropriate kmat. 
 
 
INTRODUCTION 
 
The most important property of a piezoelectric material for practical applications is its ability to 
generate and to detect stress waves, i.e. to convert electrical energy into mechanical energy 
and vice versa. As it is well known, the electromechanical coupling factor k  fully characterizes 
this energy conversion, taking the elastic, dielectric and piezoelectric properties into account; 
but, because these properties are strongly dependent on the electrical and mechanical bound-
ary conditions of the piezoelectric element, many different k  factors are defined in literature. 
More precisely, the k ij, or the so-called material coupling factor (kmat) [1], refers to a fundamen-
tally one-dimensional geometry of the piezoelement and it is related to the converted energy in 
a static or quasi-static transformation cycle. The effective coupling factor keff refers to an oscillat-
ing specimen of any geometry, but it is not clear in the literature how it is related to the energies 
involved in a dynamic transformation cycle. Berlincourt et al. gave another definition of the cou-
pling factor in their fundamental work on piezoceramics [2]. This definition can be applied in 
static and dynamic situations and it can be computed, in principle, for any geometry of the pie-
zoelement, but it does not have a precise physical meaning and its relation with keff which, 
among all k  factors, is the only one which can easily be measured, is not clear. Finally, in the 
latest IEEE standard on piezoelectricity [3] it has been suggested to abandon any physical in-
terpretation of this parameter, based on energy interaction, and proposed to define it as a natu-
ral combination of elastic, electric and piezoelectric coefficients, as they arise in analytical solu-
tions of electrically driven piezoelements of simple geometry, which can be described by one–
dimensional models. In a previous work we demonstrated that, like in static conditions, it is pos-
sible to define the k factor as ratio of energies also in dynamic situations [4]. Indeed for a loss 
less piezoelectric element in free oscillation, mechanically and electrically insulated, the k factor 



can be defined as the square root of the ratio of the converted electrical energy to the total en-
ergy involved in a transformation cycle, i.e. the kinetic energy; the value of the k factor com-
puted in this way coincide with the one obtained using the empirical relation of the effective 
coupling factor keff which can be easily measured experimentally. In this work, by means of 1–D 
distributed models, we demonstrate that these results can be applied to loss less piezoelectric 
elements vibrating in a longitudinal (for example rod) or a transverse (for example width) mode, 
and that the obtained results are proportional to the appropriate kmat. 
 
 
THE DYNAMIC COUPLING FACTOR FOR LONGITUDINAL MODES 
 
Let us consider, a piezoelectric bar of length l along z (or 3 direction), with its end faces elec-
troded and with its cross section A of small diameter, compared with the length (see Fig. 1). 
 

 
Fig. 1. Geometry of the piezoceramic rod vibrating in a (rod) longitudinal mode. 
 
Suppose that the bar is made of piezoelectric ceramic, which belongs to the 6 mm symmetry 
class, polarised along the 3 direction. Because of the particular geometry and the electrical and 
mechanical boundary conditions, the element can be described by a one dimensional stress–
strain system and therefore by two scalar constitutive equations [2]: 
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The wave equation can be written as [2]: 
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where ξ3 is the particle displacement in the z direction and the propagation velocity is: 
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By imposing stress–free conditions on the two terminal faces and supposing a sinusoidal excita-
tion (D3 = D0 • e jω t), the solution of the wave equation (3) is: 
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where 33 / vlωϑ = . The particle velocity in the propagation direction z is the time derivative of 

the displacement: 
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while the strain along z is the space derivative of ξ3: 
 

3
3

3

3
333  

 
  

2
 

 
   D

v
z

sintan
v

z
cosgS




























+








=

ωϑω . (7) 

 
The electric field distribution can be computed by the second constitutive equation (1): 
 

.D
v

z
sintan

v
z

cos
s

g
E

D
S

3
3

3

333

2
33

333
 

  
2

   
 

   







































+








−=

ωϑω
β  (8) 

 
By integrating the electric field along z between 0 and l (see Fig. 1), we obtain the voltage 
across the two electroded surfaces of the bar: 
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The kinetic and the potential (converted) electrical energy densities can be computed by using 
(6) and (9): 
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where ( )l/AC S  330 β=  is the clamped capacitance of the element. 
In the already cited paper [4] we demonstrated that, for a loss less piezoelectric element in free 
oscillation, mechanically and electrically insulated, the k  factor can be defined as the square 
root of the ratio of we and wk. According to IEEE Standard on piezoelectricity [3], this ratio must 
be computed when the element is fully insulated from the surrounding. The element is mechani-
cally insulated, because we imposed stress free conditions, in order to solve the wave equation 
(3) and to compute the displacement (5); from an electrical point of view, the boundary condi-
tions impose an exciting current and therefore the element can be considered electrically insu-
lated when it vibrates at a frequency so that the input current goes to zero, or, equivalently, so 
that the electrical input impedance goes to infinity. The electrical input impedance is given by: 
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As it can be seen from the previous equation, Zi goes to infinity for πϑ →3 , i.e. for ù approach-

ing the antiresonance frequency ù0 = ð v3 / l and it is evident from (10) and (11) that at this fre-
quency both the kinetic and electric energies go to infinity, in fact we considered a loss less pie-
zoceramic element. In order to obtain the kw we compute: 
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As expected, the value of the dynamic coupling factor (kw) is less than the value of the static 
factor (kmat), because in dynamic conditions not all the elastic energy is electrically coupled and 
vice versa. The proportionality coefficient between kw and kmat is the same computed by Berlin-
court in [1] and relating keff and kmat; on the other hand, in the already cited paper [4], we dem-
onstrated that the effective coupling factor has the same value of the dynamic factor. 
 
 
THE DYNAMIC COUPLING FACTOR FOR TRANSVERSE MODES 
 
In order to show that the previous result is independent on the wave propagation direction, we 
now compute the dynamic coupling factor for a piezoelectric element vibrating in a transverse, 
for example in the width, mode. Consider a piezoelectric bar with its length w along the x–
direction, with the electroded faces normal to the z–direction (the polarisation direction) and with 
both cross–sectional dimensions a and b small compared with the length (see Fig. 2). 
 
 
 

 
 
 
 
 
Fig. 2. Geometry of the piezoceramic element vibrating in a transverse (width) mode. 
 
Because of the geometry, the electrical and mechanical boundary conditions, the element can 
be described by the two scalar constitutive equations [2]: 
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The wave equation can be written as [2]: 
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where ξ1 is the particle displacement in the x direction and the propagation velocity is: 
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By imposing stress–free conditions on the two faces orthogonal to the x axis (the element is 
therefore mechanically insulated) and supposing a sinusoidal excitation (E3 = E0 • e jω t), the so-
lution of the wave equation (15) is: 
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where 11  v/wωϑ = . The particle velocity in the x propagation direction is the time derivative of 

the displacement: 
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while the strain along x is the space derivative of ξ1: 
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The electric displacement can be computed by the second constitutive equation (14): 
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is the static (material) coupling factor for this vibration mode [2]. 
By differentiating the electric displacement with respect to the time and integrating along the x–y 
plane (see Fig. 2), we obtain the current in the specimen: 
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The kinetic energy density can be computed by using the (18): 
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For this vibration mode the potential (converted) electrical energy must be computed taking the 
current I into account, because the voltage V represents the electrical excitation: 
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where ( ) b/awC T
w   330 ε=  is the capacitance of the element in Fig. 2. 

To compute the k  factor we must ensure that the element is also electrically insulated; in this 
case the electrical boundary conditions impose an exciting voltage and therefore the element 
can be considered insulated when the input voltage goes to zero, or, equivalently, when the 
electrical input admittance goes to infinity. The electrical input admittance is given by: 
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In the previous equation it is evident that Yi goes to infinity for πϑ →1 , i.e. for ù approaching 

the resonance frequency ù0 = ð v1 / w; as expected, at this frequency both the kinetic and elec-
tric energies go to infinity (see (23) and (24)), because we considered a piezoceramic element 
without losses. In order to obtain the kw for this vibration mode we, also in this case, compute: 
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Comparing the expression of the dynamic coupling factor computed for this vibration mode with 
the expression obtained for the longitudinal mode (see (13)), we can observe that the relation 
between kw and kmat is the same in both cases. We can therefore conclude that, for a one di-
mensional vibration mode (longitudinal or transverse), the dynamic coupling factor is related to 
the so-called material factor by the proportionality coefficient 8 / ð

2. 
 
CONCLUSIONS 
 
In this paper we have computed the dynamic coupling factor of two piezoelectric elements vi-
brating in the rod and the width mode respectively. By means of the appropriate 1–D distributed 
models, the k factor was computed according the definition given in [4], i.e. as the square root of 
the ratio between the converted electrical energy and the kinetic energy — the total energy in-
volved in a transformation cycle. In both cases we obtained that the dynamic coupling factor is 
related to the appropriate material coupling factor by the proportionality coefficient 8 / ð

2. We 
can therefore conclude that this definition of the dynamic coupling factor can be applied to any 
one dimensional vibration mode (longitudinal or transverse) of a loss less piezoelectric element. 
In the future we think to extend this definition to multi dimensional elements and to take the ma-
terial losses into account. 
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