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ABSTRACT 
Acoustic scattering by two identical, impenetrable and parallel cylinders is studied by 
emphasizing the role of the symmetries of the scatterer. The characteristic determinant of the 
scattering matrices is expanded in terms of simple traces which are semiclassically evaluated in 
order to extract the periodic orbits. Generalized formulas are derived for all the contributions 
which are purely geometrical or composite (including a creeping section). All the scattering 
resonances, interpreted as periodic orbits, are in excellent agreement with the exact results. 
The problem of scattering by two impenetrable cylinders can be considered as a canonical 
problem. 
 
Scattering problems by open systems have been extensively investigated in many fields of 
physics (for instance in quantum mechanics, electromagnetism, optics, and acoustics). Many 
semiclassical methods have been carried out in the past to study such problems. A very 
powerful one is the geometrical theory of diffraction (GTD) developed by Keller [1] in order to 
describe the evolution of waves in terms of rays. Another useful method is the semiclassical 
trace formula introduced by Gützwiller [2, 3] and extended by other authors [4-7], using cycle 
expansions of zeta functions or quantum Fredholm determinants. Afterwards, the GTD has 
been incorporated by Vattay, Wirzba, Rosenqvist, and Whelan [8-10] in the Gützwiller trace 
formula in order to take account of the diffraction effects due to creeping waves. This periodic 
orbit theory of diffraction improves previous results, but errors still exist [9]. 
 
 
We propose here a semiclassical approach to extract and interpret all the scattering resonances 
of the two impenetrable cylinders scattering problem. The characteristic determinants of the 
scattering matrices involved in the problem are expanded in terms of simple traces which are 
evaluated using the Watson transformation [11]. Generalized formulas have been derived for all 
the contributions which are purely geometrical or composite, i.e., with a geometrical part (one or 
more reflections) and a diffractive part (creeping sections) (for more details, see Ref. [12]). The 
physical interpretation of the resonances is realized. 
 



 
 
I. SEMICLASSICAL THEORY 
We consider two infinite, identical, impenetrable and parallel cylinders of radius a with a center-
to-center distance d. In previous papers [13-15], an exact formalism has been developed by 
emphasizing the role of the symmetries of the scatterer. The two-cylinder system has a C2v 
symmetry [16] with four one-dimensional irreducible representations labeled A1, A2, B1, and B2. 
We present here our method for the A1 representation. The results are easily generalized to the 
three others representations of C2v. The A1 scattering resonances are the zeros in the complex 
ka-plane of the characteristic determinant (see Refs. [5, 15]) 
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The vector Sq(ka) includes the boundary conditions (b.c.) and is given for the Neumann b.c. by 
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From now on, to ease up the notation, the A1-dependance is suppressed. We use the cumulant 
expansion given in Refs. [6, 12]. Introducing the notations 
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the first two cumulants read 
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In what follows, we extract all the periodic orbits from the first two terms of the cumulant 
expansion in a natural way using the Watson transformation [11], the method of steepest 
descent [17], the residue theorem [18], and high frequency approximations. 
 
 
A. The First Term Of The Cumulant Expansion 
The first order cumulant (4) is rewritten using Eqs. (1), (2) and (3). We apply the usual Watson 
transformation [11] to convert the partial wave series into a contour integral therefore 
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The contour C encircles the real axis in the clockwise sense. It should be noted that the 
integration takes into account the Cauchy principle value at the origin. The deformation of the 
contour C permits one to extract from Eq. (5) a purely diffractive contribution fdif,1 using the 
residue theorem and a purely geometrical contribution fg,1. Using Debye asymptotic expansions 
[19], the residue-series contribution fdif,1 reads 
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Here νn denotes the poles of the Sν function in the complex ν-plane (Refs. [12, 20]) and r(νn) is 
the residue of Sν at the poles ν= νn. The purely geometrical contribution fg,1 is evaluated in the 
high frequency limit kap1 and kdp1 using the method of steepest descent  
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We have introduced the reflection coefficient R(ν, ka) which is defined according to the b.c. 
and its value is -1 for Neumann b.c. . Finally, the first cumulant is asymptotically approximated 
by 
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B. The Second Term Of The Cumulant Expansion 
The second order cumulant is given by Eq. (4). The term (f1)2 is directly deduced from the first 
order cumulant whereas we have to evaluate the term f2 given by Eq. (3). Using the expressions 
of the matrix elements (2), f2 reads 
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Using the Watson transformation, we replace the two sums over the integers p, q by two 
contour integrals over the complex numbers ν1, ν2. 
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The contours C1, C2 encircle the real positive axis in the clockwise sense in the corresponding 
complex ν1-plane and ν2-plane. In order to evaluate the double integral (6), we define 
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We independently proceed to the modifications of the C2 contour in the complex ν2-plane and of 
the C1 contour in the complex ν1-plane, following the method used for the first order cumulant. 
We obtain a residue-series contribution and a geometrical contribution for each one 
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Consequently, three different contributions are obtained for f2 (with simplified notations) 
.2,2,2,2 2 gdifdd ffff ++=  

fdd,2 is a purely diffractive contribution deduced from previous results. fdif,2 is a composite 
contribution, i.e., it contains a diffractive part and a geometrical part evaluated by using the 
method of steepest descent. fg,2 is a purely geometrical contribution obtained applying twice the 
method of steepest descent on ν1 and ν2. After simplifications, the second cumulant reads 
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More detailed results are given in Ref. [12]. The same procedure is applied to the third order 
cumulant and a generalization is derived. 
 
 
C. Generalization 
Generalizing previous results concerning the cumulants, detM for the A1-representation of C2v 
can be semiclassically evaluated for any truncation order q by 
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where Qg,q is defined as a geometrical cumulant 
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fdif,m is the m-order composite contribution composed by one diffractive part and by (m-1)  
geometrical parts. fg,m is the m-order geometrical contribution. The method described in case of 
the A1-representation can be easily extended to the three other irreducible representations A2, 
B1 and B2 of C2v using simple modifications (see Ref.[12]). 
 
 
 
II. NUMERICAL RESULTS AND PHYSICAL INTERPRETATION OF RESONANCES 
The scattering resonances of the two-cylinder system are physically interpreted as periodic 
paths using the expressions obtained for the A1 representation. 
 
 
A. Purely Geometrical Contributions 
The geometrical contributions are of the form 
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where the exponential term provides the periodic orbit interpretation. These contributions are 
obviously associated with the closed geometrical path described in Fig. 1. More precisely, q 
corresponds to the number of reflections on the cylinder. 

 
FIG. 1: Periodic orbit of the geometrical contributions fg,q. 

 
 

B. Composite Contributions 
From the previous results, all the composite contributions are of the form 
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l
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t denotes the geometrical path between the two cylinders and β stands for the angle of the 
creeping section. For instance, Figs. 2 and 3 display the periodic orbit deduced from the two 
first order diffractive contributions. 
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Figures 4, 5 display the periodic orbits deduced from the third order composite contributions. 
These periodic orbits present creeping sections around the cylinders and a number of 
reflections growing up with the order q of the composite contribution. In the limit of high q-value, 
the composite contributions go to a limit periodic path. 
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C. Exact versus asymptotic scattering resonances 
We present here a comparison between the exact resonances and the asymptotic resonances 
calculated from our semiclassical theory for Neumann b.c. in the complex ka-plane for the 
center-to-center distance d=6a. The exact scattering resonances are the zeros of detM and have 



been determined in the restricted domain 0b Re(ka) b 50 and -1.8b Im(ka) b 0 
using the argument principle [21]. The exact resonances are compared to resonances obtained 
with our semiclassical approach for the first three cumulants in the case of Neumann b.c.. At the 
first, second, and third truncation orders, the expansion of detM reads 
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where Q0(A), Q1(A), Q2(A) and Q3(A) are calculated with the asymptotic formulas. Figure 6 
displays the comparison between exact and first order asymptotic resonances [the zeros of Eq. 
(7)]. We observe a good agreement for the resonances lying on the line close to the real ka-
axis. They are associated with the first order geometrical contribution presented on Fig. 1. The 
first order approximation provides a second asymptotic line whose resonances do not match the 
exact ones. They are associated with the  purely diffractive contribution fdif,1. It should also be 
noted that the second asymptotic line is located deeper inside the ka-plane and contains less 
resonances than the exact second line. The first approximation of detM does not provide the 
complete location of exact resonances in the studied region. We must therefore take into 
account the second cumulant. 
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Figure 7 displays the comparison between exact and second order asymptotic resonances [the 
zeros of Eq. (8)]. The first asymptotic line still match the exact data. The second resonances 
line is well approximated up to Re(ka)> 25. The corresponding asymptotic resonances are 
associated with the diffractive contributions fdif,1, fdif,2 and with the second order geometrical 
contribution fg,2. A third exact line is not displayed by the second order expansion of detM, we 
therefore take into account the third order cumulant. 
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Figure 8 displays the comparison between exact and third order asymptotic resonances [the 
zeros of Eq. (9)]. A very good agreement is obtained in the whole studied domain. Nevertheless 
a weak discrepancy is observed in the region Re(ka)d 8 and Im(ka)d-1.2 where the 
asymptotic expansions used are not very efficient in this region. The third line, coming from 
Re(ka) > 8, Im(ka)> -1.7 and joining the second line near Re(ka) > 25, Im(ka)> -
0.9, is associated with the third order geometrical contribution fg,3 and with the composite 
contribution fdif,3. Similar results are obtained for the three other representations A2,  B1, B2 of 
the C2v symmetry group in cases of Dirichlet and impedance b.c. (see Ref. [12]). 
 
 
 
III. CONCLUSION 
The two impenetrable cylinders scattering problem has been entirely solved. All the scattering 
resonances of the cumulant expansion have been extracted and interpreted in terms of periodic 
orbits. We have obtained a semiclassical approximation of the characteristic determinant for 
each irreducible representation of the C2v symmetry group. Moreover, our semiclassical 
approach provides scattering resonances in excellent agreement with the exact results. We can 
then postulate that scattering of waves and particles by two identical, impenetrable cylinders is 
a canonical problem. 
The semiclassical formalism developed in this paper is actually extended to the more difficult 
scattering problem by two penetrable cylinders (fluid b.c. in acoustics, or mixed b.c. in quantum 
physics). It should be noted that multiple scattering problems by penetrable objects have never 
been semiclassically treated. 
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