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ABSTRACT 
A fundamental problem in Doppler ultrasound blood flow measurements is the computation of 
the signal’s instantaneous frequency, which is generated when the signal is acquired. In fact, it 
is proportional to the flow velocity. The Time-Frequency Distributions Cohen Class (TFD) have 
efficiently estimated the instantaneous frequency for quasi-stationary signals such as arterial 
blood-flow. However, the precision of the spectral estimations depends on diverse factors. In 
this work a systematic study is conducted which indicates the relationship between the precision 
of the spectral estimations and the particular parameters of each kernel of the TFD distributions 
(e.g. Choi Williams, Bessel and Born Jordan). It considers the SNR and the sample length to 
obtain the optimum parameters that minimize the RMS error in the estimation. 
 
 
INTRODUCTION 
Previous works have suggested that some time frequency distribution parameters affect the 
accuracy of the spectral estimations such as the pseudo instantaneous mean frequency and the 
RMS mean bandwidth (Cardoso, et al., 1996). A preliminary study has already been conducted 
obtaining encouraging results (García, et al., 2000), this work complement those studies. 
 
 
TIME FREQUENCY DISTRIBUTION 
The time frequency distributions (TFD) of the Cohen class considered in this work are the 
Bessel, the Born Jordan and the Choi Williams distributions (Cohen, 1989), their definitions 
follow. 
 
 

Bessel Distribution 
The discrete Bessel TFD when it is evaluated at discrete time zero and optimized is: 
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where k  is the discrete frequency taking integer values from 0 to N-1, α is a scaling factor taking 
the half of any natural value, and W(n) is a Hanning window of length 2N-1 (Boashash, and 
Black, 1987; Guo, and Durand, 1994). 



   
Fig 1: Signal’s pseudo instantaneous mean frequency (PIMF) wave form of the 

simulated Doppler ultrasonic quasi-stationary signal that represents a 
typical blood flow in the Carotid artery. 

 

Born Jordan Distribution 
The discrete Born Jordan TFD when it is evaluated at discrete time zero and optimized is: 
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where k  is the discrete frequency taking integer values from 0 to N-1, α is a scaling factor taking 
the half of any natural value, and W(n) is a Hanning window of length 2N-1 (Boashash, and 
Black, 1987; Cohen, 1989). 
 
 

Choi-Williams Distribution 
The discrete Choi-Williams TFD when it is evaluated at discrete time zero and optimized is: 
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where k  is the discrete frequency taking integer values from 0 to N-1, σ is a scaling factor taking 
any positive real value, and W(n) is a Hanning window of length 2N-1 (0 (Boashash, and Black, 
1987; Choi, and Williams, 1989). 
 
 
DOPPLER ULTRASOUND SIGNAL SIMULATION 
In order to characterize the pseudo instantaneous mean frequency (PIMF) and the RMS mean 
bandwidth (RMSMB) error estimation, it is used a simulated Doppler ultrasonic quasi-stationary 
signal that represents a typical blood flow in the Carotid artery. The signal has the following 
characteristics: signal’s duration 0.7s and constant RMSMB 100Hz. Its PIMF wave form is 
shown in figure 1. The simulation procedure is accurate described in (Cardoso, et al., 1996). In 
this work, a sampling rate fo=19200Hz is considered, i.e. T=13440 samples. Note that the 
sampling rate must be four times the signal’s maximum frequency when TFDs are used. 
 
 

Noise generation 
White noise is added to the signal before starting the analysis procedure. In this work, signal 
noise ratios (SNR) of -10 dB, -20 dB, -30 dB and –40 dB, and a noiseless case are considered 
in this study. 
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Fig 2. RMSBW (bandwidth) and PIMF (frequency) estimation error functions of 

the Bessel TDF versus its parameter (α) and the SNR for the case of 
the sampling window length of L=127. 

 
SPECTRAL ESTIMATION 
The spectral estimation of both the RMSB and the PIMF are treated as in (Cardoso, et al., 1996; 
Fan, and Evans, 1994). Their procedures have a common part. First, a signal portion of length L 
is taken from the nth to the (n+L-1)th elements of the whole signal, it will be called the nth signal 
window. L can be 63, 127 and 255, and L=2N-1. The elements of the window are numbered in 
the discrete time domain from 1–N to N-1. Second, the analytic signal of this window is 
calculated. The elements of the analytic signal are also numbered in the discrete time domain 
from 1-N to N-1. Third, the TFD of this analytic signal is calculated using equation (1), (2) or (3), 
depending on the case. The elements of the TFD are numbered in the discrete frequency 
domain from 0 to N-1. Note that the components corresponding to negative frequencies, which 
are numbered from N/2 to N–1, are all equal to zero. Finally, the pseudo instantaneous power 
distribution (PIPD) of this TFD is calculated. Its elements are also numbered in the discrete 
frequency domain from 0 to N-1. Observe that the components corresponding to negative 
frequencies, which are numbered from N/2 to N–1, are also equal to zero. The PIPD is defined 
as: 
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In case of the PIMF calculation, the pseudo instantaneous mean frequency associated to the nth 
window signal is stated by: 
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where fk is the real frequency associated to the discrete frequency k. Observe that n can be 
considered as the whole signal’s discrete time variable, running from 0 to T-L. Indeed, it 
represents the total amount of fully overlapped signal windows of length L in the complete signal 
(an overlapping of L-1 elements). That is, the PIMF(1) correspond to the 1st signal window; the 
PIMF(2), to the 2nd signal window; and so on. On the other hand, in case of the RMSMB 
calculation, the RMS mean bandwidth associated to the nth window signal is stated by: 
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with the same considerations as in equation (5). 
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Fig 3. RMSBW (bandwidth) and PIMF (frequency) estimation error functions of 

the Born Jordan TDF versus its parameter (α) and the SNR for the case 
of the sampling window length of L=127. 
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Fig 4. RMSBW (bandwidth) and PIMF (frequency) estimation error functions of 

the Choi Williams TDF versus its parameter (σ) and the SNR for the 
case of the sampling window length of L=127. 

 
ERROR ESTIMATION 
Typically, in any spectral estimation, the error has two independent components (Cardoso, et 
al., 1996). The first component represents the mean of the errors of the estimated values 
respect to the theoretic values. That error will be called the bias. The second component 
represents the standard deviation (std). Then, the root mean square (RMS) error is estimated 
according to: 
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In case of calculating the error estimation of the PIMF, it can be done with: 
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where m is the total amount of fully overlapped signal windows of length L in the whole signal of 
length T, in consequence, m= T-L+1. 
 
Whereas, in case of calculating the error estimation of the RMSBW, it can be done with: 
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Fig 5: Bessel’s optimal parameters as a function of the SNR dynamical range 

(10-inf dB, 20-inf dB, 30-inf dB, 40-inf dB, inf dB), and the sampling 
window length (L=63, L=127, L=255). Three cases are considered: 
RMSBW estimation error; PIMP estimation error; and, simultaneous 
RMSBW and PIMF estimation error. 
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Fig 6: Born Jordan’s optimal parameters as a function of the SNR dynamical 

range (10-inf dB, 20-inf dB, 30-inf dB, 40-inf dB, inf dB), and the 
sampling window length (L=63, L=127, L=255). Three cases are 
considered: RMSBW estimation error; PIMP estimation error; and, 
simultaneous RMSBW and PIMF estimation error. 
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with the same considerations as in equations (8) and (9). 
 
 
RESULTS 
It is considered that there are four relevant factors that determine the error in the spectral 
estimations: the signal itself, the value of the TFD’s parameters (or the TFD’s scaling factors), 
the sampling window length and the SNR. An error function is constructed for each TFD and for 
each sampling window length, varying the TFD’s parameter and the SNR. It is observed that the 
error function has a minimum value considering traces at constant SNR. That minimum value 
occurs at the so called optimal value of the TFD’s parameter. Detailed results for each TFD are 
shown in figures 2, 3 and 4, corresponding to the case of a sampling window length of L=127. 
Results corresponding to the cases of the sampling window length L=63 and L=255 are very 
similar. 
 
In practice, a dynamical range of SNR should be considered. For this reason, the optimal 
parameters that minimize the RMS error estimation associated to a SNR dynamical range are 
calculated. The SNR dynamical ranges considered in this work are 10-inf dB, 20-inf dB, 30-inf 
dB, 40-inf dB and the noiseless case. Furthermore, sometimes it is required to calculate only the 
PIMF; but in other occasions, only the RMSBW or both of them are required. The three previous 
cases are considered and the results are shown in figures 5, 6 and 7. 
 
 
CONCLUSIONS 
The optimal parameters of time frequency distributions (TFD) have been calculated in this work. 
The optimal parameters are those that minimize the error estimation of spectral parameters 
such that the pseudo instantaneous mean frequency (PIMF) and the RMS mean bandwidth 
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Fig 7: Choi Williams’ optimal parameters as a function of the SNR dynamical 

range (10-inf dB, 20-inf dB, 30-inf dB, 40-inf dB, inf dB), and the 
sampling window length (L=63, L=127, L=255). Three cases are 
considered: RMSBW estimation error; PIMP estimation error; and, 
simultaneous RMSBW and PIMF estimation error. 

 
(RMSBW). Three TFD have been considered: the Bessel, the Born Jordan and the Choi 
Williams distributions. Four relevant factor that affect the spectral estimations are modeled: the 
signal itself, the TFD’s parameters or scaling factors, the sampling window length and the SNR. 
The signal considered is a simulated Doppler ultrasonic quasi-stationary one that represents a 
typical blood flow in the Carotid artery with sampling windows of L=63, L=127 and L=255, and 
SNR of 10 dB, 20 dB, 30 dB, 40 dB and a noiseless case. The optimal parameters have been 
calculated by constructing the error estimation functions that characterizes both, the PIMF and 
the RMSBW, versus the TFD’s parameter and the SNR, considering the sampling window 
length constant. Then, the TFD’s optimal parameters have been chosen to minimize the RMS 
error estimation associated to a dynamical range of SNR. The SNR dynamical ranges 
considered are 10-inf dB, 20-inf dB, 30-inf dB, 40-inf dB and inf dB. Figures 5, 6 and 7 show the 
detailed results obtained. In general, the RMSBW estimation and the simultaneous RMSBW 
and PIMF estimation have the same optimal parameters. For the Bessel TFD the parameters 
are α=2 for L=63 and α=2.5 for L=127 and L=255. For the Born Jordan TFD the parameters are 
α=1 for L=63, L=127 and L=255. And for the Choi Williams TFD the parameter is σ=4 for L=63. 
On the other hand, the PIMF estimation has the following optimal parameters: Bessel’s α=3 for 
L=63, and α=2.5 for L=127 and L=255; Born Jordan’s α=1 for L=63, and α=2 for L=127 and 
L=255; and Choi Williams’ σ=1 for L=63. In order to obtain more detailed information about the 
Choi Williams’ parameters, refer to the figure 7. 
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