SOLUTION PROPERTIES OF POLYMER BY ULTRASOUND

PACS: 43.35.Zc
H. Ikeda

Department of Engineering
Tokyo University of Science
1-3 Kagurazaka, Shinjyuku-ku
162-8601 Tokyo, Japan
E-mail: ike@ci.kagu.tus.ac.jp

ABSTRACT

The object of this investigation is to obtain information on intermolecular interaction of segment of polymer chain. For that purpose, compressibility of polymer was measured in dilute solution by measurements of velocity of ultrasonic longitudinal wave at 1 MHz and density. Two kinds of compressibilities of solute were adopted as compressibilities of polymer.

One is the "partial specific compressibility" $\left(\bar{\kappa}_{2}^{0}\right)$ of solute and another one is the "compressibility of mixing unit $\left(\kappa_{2}\right)$ " of solute. $\bar{\kappa}_{2}^{0}$ is obtained by applying the additive of compression volumes ($\kappa=\phi_{1} \kappa_{2}+\phi_{2} \kappa_{2}, \phi_{2}$:volume fraction of solute) and κ_{2} is obtained by applying the additive of intermolecular forces ($\kappa^{-1 / 7}=\phi_{1} \kappa_{1}^{-1 / 7}+\phi_{2} \kappa_{2}^{-1 / 7}$) to polymer solution. $\bar{\kappa}_{2}^{0}$ was found to be independent of molecular weight of polymer. However, values of $\bar{\kappa}_{2}^{0}$ were found to depend on solvent and further the excluded - volume (.) of segment. On the other hand, κ_{2} is independent of not only molecular weight of polymer but also solvent. Therefore, it is found that "compressibility of mixing unit $\left(\kappa_{2}\right)$ " corresponds to compressibility of segment. Data of compressibility of polystyrene measured in various solvents are given as

Table 1 Partial specific compressibility ($\bar{\kappa}_{2}^{0}$) and compressibility of mixing unit (κ_{2}) of Polystyrene $\left(M=5 \times 10^{4}\right)$ in various solvents at $30, c_{1}$: Ultrasonic velocity of solvent

PST	\boldsymbol{c}_{1}	\boldsymbol{F}_{20}	κ_{1}	$\bar{\kappa}_{20}$	κ_{2}	$\beta \times 10^{24}$
Solvent	$(\mathrm{m} / \mathrm{s})$	$\left(\mathrm{cm}^{3} / \mathrm{g}\right)$	$\left(\mathrm{cm}^{2} /\right.$ dyne $)$		$\left(\mathrm{cm}^{3}\right)$	
Cycbhexane	1228.6	0.943	86.2	352	40.5	1.66
Ethylacetate	1120.5	0.914	89.6	242	44.7	2.39
Butanone	1176.0	0.920	91.0	22.8	44.6	2.78
sec-BB	1297.0	0.943	70.0	35.8	43.7	5.79
m-chrobenzene	12542	0.924	58.0	39.9	42.7	8.03
Toluene	12882	0.926	70.3	352	43.4	9.93
Benzene	12792	0.917	70.4	36.3	44.1	10.69
Average value		0.927			43.0	

