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1. Introduction

The propagation of noise in the atmosphere is calculated only for average sound velocity
profiles until today. To describe fluctuations of the noise level caused by an irregular
motion of the air a statistical theory is necessary. Although ne such theory exists there
are several methods to obtain approximate solutions of the problem. This paper reviews
these methods in order to compare their respective validity ranges.

2. Helmholtz equation

Sound propagation in the turbulent atmosphere iz described by a linear partial differential
equation /1/ which contains the wind and temperature field. Most of the literature deals
with the scalar Helmholtz equation, ignoring two components of the wind vector. The
one component left is combined with the temperature to an acoustical refractive index.
Its relative deviation from the mean refractive index is the random variable introducing
the statistics to the Helmholtz equation.

(a + & (1 + u[:])) w(r) =0 . (1)

A = Laplace operator; Ek = wave number; p = refractive index deviation.

We are looking for the first statistical moments of the wave function to be measured as
phase and amplitude fuctuations for a given autocorrelation function of the refractive

index deviaticn.

3. Approximation methods

A principal difficulty in solving equation (1) stems from its stochastical nonlinearity. In
spite of its apparent linearity it contains a product of two random wvariables. Therefore
the problem can only be solved approximately. There are two small parameters used for
such approximations: the size of the relative refractive index deviations and the ratio of
the wave length to the length of a typical inhomogeneity of the medium, described by the
correlation length. To compare the results obtained by the various methods described in
the following we presume a gaussian autocorrelation function.
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| = correlation length

3.1 Pert inn-

If slight refractive index deviations lead only to small wave fluctuations the wave function
can be expanded in powers of this small parameter. The first order approximation to this
series is the Born approximation known from quantum theory.

(A + k) $.(F) = Ful(7) o) (3)

thy = incident (unperturbed) wave; 4 = perturbed wave

A variant of this perturbation method is the Rytov method 1/ in which the logarithm
of the wave function is expanded. For the gquantities we are interested in, the differences
between the two methods are not very significant /2/.

Equation (3), linear also in the stochastical sense, is solved by an integral over its inho-
mogeneity and the Greens function of the homogeneous equation. The mean value of the
perturbed wave function is zero, because the mean of the random variable vanishes. An
analytical solution for the second statistical moment only exista for the small wave length
limit. On this assumption the Greens function is changed (Fresnel approximation). By
the same argumentation the integral can be simplified further /2/. The caleulation, using
(2), leads to:

<P >=|olfazr ; a=Vr<p?>il (4)
In reverse order of the approximations used above the Helmholtz equation can be trans-
formed into the eikonal equation of geometrical optics which is solved using the pertur-
bation method [1/. The validity of this result is more restricted than that of the Born
approximation. The results are only identical in the limit of small wave langths. The range
of validity of all perturbation methods is restricted to small scabtering volumes. With
increasing scattering volume the wave fluctuations are increasing too and the convergence
of the perturbation series is deatroyed.

For a small wave length - correlation length ratio the Helmholtz equation can be converted
inte a parabaolic form /1/.

Es‘fci + i -+ i + k“p(?}) qb{_r'] =10 (5)
dz dz2 ay?

This transformation is completely equivalent to the Fresnel approximation and is less
restrictive than the transformation into the eikonal equation, Physically it means the as-
sumption of small scattering angles /3/. There are several methods to solve equation (5):
statistical moment equations /4/, path integrals /5/, local method of small perturbations
/3/. To eliminate the stochastical nonlinearity in (5) all these methods assume that the
wave propagation is a Markov process referring to the main propagation direction z. Sue-
cessive scatterings are assumed to be statistically independent. The justification of this
assumption is mainly based on the small wave length compared to the correlation length.
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Its physical meaning becomes clear in the "local method of small pertubations™ /3/. The
scattering volume is divided into layers, that are thicker than the correlation length, but
thinner than the validity range of the Born approximation. The existence of such layers
requires small refractive index deviations. On this assumption the single scattering events
take place in distances larger than the correlation length, and can therefore be considered
as uncorrelated. The results for the first two moments are:

<= %e:p{—%z} - (€)
<[P >= |t (M)

The scattered intensity /4/ is:
<|$* > = <> [" = |f* (1 - ezp{-az}) (8)

& = saturation coefficient defined in (4)

Uzing at least the same presumptions as the Born approximation, this result contains
the whole perturbation series. It shows the saturation of wave fluctuations as a multiple
scattering effect. For short propagation distances it reduces to the Born approximation
result (4). For the validity of (8) it is necessary that the wave length is small compared
to the correlation length. Moreover, the refractive index deviations have to be small, but
not as small as it is necessary for the application of the Born approximation to the whole
scattering volume. It is only required that the saturation coefficient alpha appearing in
(8) and (4), is small enough so that the mean value of the wave does not change very
much over the distance of one correlation length /4/.

3.3 Smoothing method
The atmosphere always contains structures of the same size as the wave length, so that
their ratio is of the order of unity. The wave length cannot be assumed to be small.

Otherwise the mean value of the wave function does not decrease significantly over the
distance of a correlation length. To measure this kind of "smallness”, a parameter R

(generalized Reynolds number) is defined by:

R:= /<=1 (9)

The difference between the wave function and its mean value, the Huctuating part of the
wave, is expanded in powers of R to obtain an equation for the mean value only /6/. Since
the mean value varies much less than the wave itself, this expansion is called "smooth-
ing method®. The first order amoothing approximation leads to an integro-differential

equation.

(A +#) <g(F)>= -k fd“ ¥ e(F,F)en(F)uF)><¢(¥)> (10
(& = Greens funciion of free propagation
The same expression can be obtained by the use of Feynman diagrams /6/. It is solved

by Fourier transformation /7/.

< >= g e-tP{_g:} i B=a(l - exp{-F1"}) (1)



Multiple scattering effects are included in equation (10), since it is based on an infinite
partial sum of the Born series. So the saturation effect is expressed by the result (11). In
the small wave length limit it converges to the result of the parabolic equation method
(6). An integro-differential equation for the second moment of the wave function can be
developed by the same method /6/. Analytical solutions of this equation exist only for
the case that the waves are either short or long compared to the correlation length.

4. Conclusions

Two small parameters are used in methods for the approximative solution of the stochas-
tic, scalar Helmholtz equation: the relative refractive index deviation and the wave length
- correlation length ratio. They are applied in three different ways: for perturbation ex-
pansions (3.1), as a justification of the parabolic equation and the Markov-assumption
(3.2), and combined to the generalized Reynolds number for the iteration of the flue-
tuating part of the wave (3.3). These approximation methods were described here in
a sequence of increasing validity ranges. Because of ita relative independence of wave
length restrictions, the emoothing method is most suitable to the problem. Otherwise a
combination of methods could be useful to cope with the special difficulties arising from
inhomogeneous and anisotropic turbulent fields. For example, an anisotropic refractive
index profile can be treated by the method of geometric optics deterministically (ray
tracing), and the turbulence is described by a parabolic equation related to the rays.
To deseribe the noise propagation in the turbulent atmosphere more generally, an ap-
proximation method without any wave length restriction should be applied to a vector
Helmholtz equation with a refractive index tensor containing the whole wind vector.
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