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ABSTRACT

Fast, reliable computation techniques are needed for “real-time” design applications. A
method was derived from first statistical principles, by assuming random walks of energy
packets in an enclosure. The transition probabilities of the energy transfer matrix are based on
the solid angle magnitudes of the enclosure walls, subtended at some particular wall centre.
The room impulse response and the steady-state sound pressure level are computed. From the
room impulse response, the decay curve and reverberation times are computed and some room
sound quality indexes are calculated.

INTRODUCTION

The assessment of room acoustical parameters is of major importance in room
acoustics especially at the design stage. Different theoretical models have been applied for the
prediction of sound fields in enclosures, but in most of the cases they are derived from three
basic methods: the acoustic wave equation, the diffuse-field theory and the geometrical room
acoustics.

In this paper, an alternative geometrical-statistical method is presented, describing a
simple technique with low computation times, for a very wide range of room geometry
configurations [1]. The sound field inside the enclosures is considered to be contributed by
discrete energy packets, that are radiated from one, or several, sources. The motion of these
energy packets, or sound particles, or phonons, is completely determined by an equation of
motion that considers the transition amplitudes, when the sound particle changes its location
inside the enclosure. Physical phenomena such as sound absorption in the air and in the
surface walls are accounted for.

When considering that successive transitions occur at discrete time intervals, given by
the mean reflection time, then the equations represent a homogeneous Markov chain of first
order for the energy packets. The basis of this technique was earlier considered by Gerlach and
Mellert [2] and by Kruzins and Fricke [3].

THEORY
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The sound field inside an enclosure will be seen as resulting from energy packets
(sound particles), that are emitted from sound sources. These energy packets are then reflected
diffusely from the enclosure surface several times until some receiver detects them.

Let P(s, 0) denote the value of the probability density of the sound particle at point R,
located over the surface of the enclosure, and given by the position vector s at time t = 0.
Therefore, P(s, 0) dS yields the probability of the particle being located over an infinitesimal
surface element dS at initial time t  = 0. The form of the probability density P must obey the
normalisation condition for any value of time t:
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Assume that the initial phonon distribution P(s, 0) is known. To determine the “motion”
of the sound particle inside the enclosure with volume V and with total surface S, it is necessary
to determine the value of P, as from the statistical physics’ master equation:
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which can be integrated over the entire surface S of the enclosure. )(0 rs →dtW  is the transition
amplitude density, or transition probability density per unit time when the sound particle changes
from position s to position r in the time interval dt. The superscript 0 means that the transition
amplitude densities are to be calculated at time t = 0.

The probability density P(s, t) can be calculated as follows:
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The quantity given by the integral inside the rectangular brackets equals the transition
amplitude density when the phonon passes from the state s to any other state r in the time
interval dt. Equation (3) can thus be written as:
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Equation (4) allows the determination of the probability density distribution for the sound
particle at all subsequent time t by writing:
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In equation (5), )(0
21 ss →dtW is the transition amplitude density per unit time when the phonon

changes its position from an infinitesimal surface element dS1, located at position vector s1, to
an infinitesimal surface element dS2, located at position vector s2.

The characterisation of the phonon will consider its location inside the enclosure and
also the acoustic energy that it carries. Therefore, the probability densities, as given by (5), can
be interpreted as the “equation of motion” for the acoustic energy density. If the initial energy
density per unit time over the enclosure surface S at time t = 0 is defined as Π(s, 0), then
equation (5) can be re-written as:
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with the condition that:
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where Π is the total acoustic energy per unit time inside the enclosure at t = 0. Equation (6)
must be altered in order to include surface sound absorption and air attenuation:

∫∫ ∫∫ −→−→= −

S S

dt
dtdt dddW)W, (, t)( n

n n21nn1211 sssssssssss ...))(1)(())...(1)((0... 10 ααΠΠ (8)

The sound attenuation in the air inside V can be taken into account by considering an
exponential factor, thus obtaining:
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where the factor m stands for the air absorption coefficient [4]:
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for the sound frequency f and a relative humidity h.

Equation (9) establishes the correct determination of the phonon motion inside the
enclosure with volume V. The product of transition amplitudes in equation (9) means that
successive transitions are considered as independent and only depending on the immediate
previous transition. The phonon motion can be regarded as a Markov process.

If the entire enclosure surface S is divided into M homogeneous and finite surfaces Sj,
and it is further assumed that the probability of finding a sound particle is constant over Sj, the
above multiple surface integrals in equation (9) are converted into M sums:
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where D(Si, Sj) is the mean distance between surface Si and surface Sj. If the transition time
intervals are assumed to be equal, i.e. dt = dt1 = dtn = τ, where τ is a reference time interval,
then:

τkdtkt =×= (12)

If the transition amplitudes are assumed to remain invariant with time, then
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which represents a homogeneous Markov chain of first order and where:
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with D(Si, Sj) being the mean distance between surfaces Si  and Sj. Equation (13), together with
definition (12), can be re-written in a matrix form [1] (as in [2-3]):

[ ] [ ] [ ]k
Tk )0()( ΠΠ τ = (15)

where [Π](kτ) is an M-dimensional row vector with entries ),(, τΠΠ kS jkj = , which define the

energy density over Sj at time kτ. [Π](0) is an M-dimensional row vector, called the starting
vector:
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whose entries are determined so as to represent the initial acoustical energy density (or sound
particle  density distribution) over the various surfaces of the enclosure at t=0. The initial
acoustical energy densities Πj,0 are assumed to be constant over each surface Sj.

[ ]kT represents the kth matrix power of the MM ×  transition matrix T, with entries defined by
(14).  The entries of the starting vector [Π](0) are defined by considering N omni-directional
sound sources radiating spherical waves
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where is the solid angle of surface Sj subtended at source l, Πl is the total acoustical energy
of source l and Γl(ϑ,θ) is its directivity function.

The reference transition time, τ, can be defined [5] as cSV /4=τ , the average time
between successive reflections in a room with diffuse reflecting walls for a large phonon
ensemble, where c is the speed of the sound in the air. Equation (15) determines the acoustic
energy density inside the enclosure by taking into account the exchange of energy due to
successive reflections, or radiations, occurring at discrete time intervals kτ. If the starting vector
[Π](0) is multiplied by matrix T at discrete intervals, defined by the transition time τ, then the
sound energy can be computed in “real time”.

The transition probabilities )( jiij SSPQ →= must be defined by taking into account

the area of each surface, as well as the “viewing angle” of the surfaces, as being viewed, for
example, from the centre of Si ([6], [7]). The probability of a sound particle being radiated from
Si to Sj can be estimated by the solid angle through which Sj is seen from the centre of the
surface Si.



Página 5 de 7

The intensity of the sound, which is scattered into Ωj, the solid angle of a finite surface
Sj subtended at the receiving point {x, y, z}, is given by [5]:
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where Πj,k is the incident energy density per second hitting the surface Sj.  The total radiated
steady-state mean value, Ir, can be given by:
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where k  is the last transition where the energy densities over the surfaces have become
negligible, by comparison with the initial value. The sound pressure level can be obtained from
this quantity by using ([1,6]) cpI rr ρ3/2= , with ρ being the air density and where the sound

field incident on any surface of the enclosure is assumed to be neither direct (I  = p2/ρc) nor
diffuse (I  =  p2/4ρc). The factor 3 provided a better agreement with predictions for a highly
reverberant enclosure.

The contribution of the direct sound, emitted from the source, should be added to obtain
the total sound pressure field Lp ([1,6]):
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where rl is the distance between the receiving point {x, y, z} and the source l.
The impulse response can be determined ([1,6]) by considering the various k transitions over a
time interval kτ
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ROOM SOUND QUALITY INDEXES

Sound quality in rooms is, nowadays, increasing in importance as a scientific task,
instead of being left, as it was in the past, to the acoustician’s or even the architect’s sensitivity.
More specifically, one of the main objectives of any simulation technique in rooms is the
prediction of its sound quality. Once the room impulse response is calculated, several attributes
for the evaluation of the room’s sound quality can be determined.

The first of these indexes is the clarity factor, C80, which can be derived from the
impulse energy decay, p2(t), as
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where the numerator means the sound energy of the impulse response in the first 80 ms after
the arriving of the direct sound, known as first reflections, and the denominator is the energy of
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the reverberant sound, that is, the one that arrives after t=80 ms. The clarity factor, expressed in
decibels, establishes the degree to which discrete sounds stand apart from one another and is
one of the indexes that can be roughly related with the intelligibility of the room. The greater the
clarity factor, the more suitable the room is for speech purposes. For music performance, a
clarity index of 0 dB is considered as a minimum acceptable for good acoustics.

Another index easily computed from the impulse energy decay is the support factor,
ST1, which is defined by the following equation
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This quality index, like the clarity factor, is a rate, expressed in dB, between two
segments of the squared impulse response of the room.  The first segment is the impulse
energy decay in the time interval from 20 to 100 ms. The second one measures the impulse
decay energy in the first 10 ms. The main difference to the clarity factor is that both sound
pressure signals must be evaluated at a receiving point, located at one meter from the sound
source, which must be omnidirectional. The STI is a measure of the degree to which, for
example, the sound emitted by a musician’s instrument is reflected both to himself and to the
neighbourhood.

Since the time average squared sound decay after the sound energy interruption can be
easily computed by a reverse integration of the squared impulse response [8, 9], all sound
quality indexes depending on the decay curve at any point in the room can be calculated from
the corresponding impulse response. The first of them is, of course the reverberation time itself.
However, it is well known that the subjective perception by listeners of the sound quality in
rooms depends mainly on the initial part of the impulse response [5, 7]. That means that the
early decay time, EDT, defined as the time spent for the first 10 dB of decay of the sound is also
an important index to be considered in a room acoustics assessment.

Another interesting room sound quality index is the bass rate, BR, which is defined as
the ratio between the low and the midrange reverberation times, as given by
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where RTn stands for the reverberation time in the octave band with n as central frequency.

COMPUTER IMPLEMENTATION AND RESULTS

A computer program, COLISEO, was written for the calculation of the steady-state
sound pressure distribution and the room impulse response. This allowed the calculation of
reverberation times and room sound quality parameters, such as early decay time, clarity,
support factor and bass ratio. Comparisons with other methods and with experimental results
showed the method to be reliable, very flexible and with low computation time.
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