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INTRODUCTION

High sound pressure levels at low frequencies in a narrow band of the frequency
spectrum are often present in machinery rooms. In this case, acoustic resonators can
be used fo reduce the sound levels in the raom. A Helmholtz resonator is composed of a
small cavity related to the room by a neck. This paper presents a numerical method lo
determine the acoustical performances of such a resonator. This method takes into
account all the relevant design parameters. The comparison of numerical results o
measurements on real resonators shows good agreement.

THEORETICAL PROBLEM

The case of a single Helmholtz resonator baffled in an infinite rigid perfectly
refiecting plane is considered.
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Figure 1 : Meaodel of a Helmhoitz resonator baffled in an infinite reflecting plane.

The neck and the cavity can be of any shape. The resonator is submitted to pure tone
acoustic waves generated by a point source. Therefore it is assumed that all the
variables fields such as the acoustic pressure and velocity fields, p and V are
multiplied by e7J®!, where w denotes the excitation pulsation. The model must lead to
the determination of both the pressure and velocity fislds at the outer end of the neck so
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thatl an estimale of the resulting absorption coefficient can be found. The Helmholiz
problems in the upper semi-infinite mediurm and inside the resonator are respectively
solved using a boundary integral method and a finite element method.

The llﬁﬁaﬂun 1o be solved in the semi-infinite upper region is the Helmholtz-Huygens
equation :

ap(r aG(r,r,)
p(r) =—J.” s(r,) G(rr) dvu+H[G{r.ru} = nﬂ} - Plrg)—5- =~ ]do, (1)
Q 30

where s is a sound source density, G(r,r,) is an appropriate Green's function and n
denaotes the normal to the plane pointing downwards.

Let g(r,r;) be the generalized three-dimensionnal Green's function. This generalized
Green's function is a solution of the free field Helmholtz equation with a Dirac
distribution source at r,.r denotes the vector position of the observation point in the
propagation medium €, or on its boundary 3. In the case of a semi-infinite medium
bounded by an infinite reflecting plane , the appropriate Green's function is:

G(r.rg) - E{l‘,l‘g + E{I‘.I“u]

'y is the position veetor of the image paint source of r, with respect to the infinite
reflecting plane. Thie derivative of G(r,r,) with respect to the normal direction to the

reflecting plane cancels. The boundary conditions are §= jopVgn at the outer end of

the neck and%% = 0 on the infinite perfectly reflecting and rigid plane baffle, where

Vo=V .n and p denotes the fluid density.
Equation (1) can then be rewritten at the outer end of the neck as:

P(rp) = -I‘U s(rg) G[rp, 1) dv, + Zjap -U g(r o ry) V, (1) do, (2)
e ,

rp denotes an cbservation point at the outer end of the neck and aQ,, is the surface of the
outer end of the neck.
The equation o solve inside the resonator is the differential Helmholtz equation :
2
Ap+k'p =0 (3)
where k denotes the wave number. The equation must be solved according to the

boundary conditions .%:- jupVy at the outer end of the neck and 33%- joppp on the

neck walls of the resonator. [ denotes an acoustic admittance, which will be taken equal
lo:

k
B=(i-1)((v-1)k dy+( 7= )2kdy) )

to account for the phenomena of viscous and thermic dissipation at the walls [1). yis
the ratio of the specific heal at constant pressure over the specific heat at constant
volume, dj, the viscous boundary layer thickness, d, the heat conduction boundary
layer thickness and k the tangential component at the wall of the wave number k.

DISCRETIZATION AND SOLUTION

The discretization of equation (2) leads to the malrix equation:

Py =S +RU (5)

The components of vector P(y are defined by the values of p(rp) on the discretization
points of the outer end of the neck mesh. R is a malrix whose general term is :

Rmn = 2jap IJ glr,, .rﬂ} en{ru} do,_ (6)
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Functions en are the basis functions for the fluid velocity which are chosen equal lo the
basis functions of the pressure inside the resonator. Vector U represents the nodal
components of the normal velocity field at the outer end of the neck. Vector 5
represents the contribution of the sound source s and ils components are determined by

the wvolume integral (2).
Wﬂ use the classical finite element method to solve equation (3). The acoustic pressure
field can be defined in terms of finite element basis functions Ny, (x, v, z). The

resulting matrix eguation is:
[ Bil  Bl2 ] Py [ HU ] 7
B2! - B22 [ P2y ] - 0 )
Matrix B represents the discrelized Helmholtz operator. Its general ferm is :
Emn=j‘;[?ﬂm_?ﬁn-kszNn]dv-jmp'{;ﬂ_BNmNndﬁ (8)
T ﬂ

£, denotes the domain inside the resonator and 44, the parl of the walls inside the
resonator where an acoustic admiltance is imposed.The representation of matrix B in
four blocks allows one to separate the terms related to the outer end of the neck Py,
from the terms related to the cavity Piz. The general term of matrix H is :

H = jop J'J- N_(x.y) e_(xy) dx dy 9
a0,

mn

Solving Of The Goupled Problem :

The coupled problem can be solved by gathering equations (5) and (7) into a
genaral system of equations. The inversion of this system provides the solution
containing pressure vector, P(1) , the nodal components of the fluid velocity, U, at the
outer end of the neck and pressure vector P2y in the cavity.

! a =R P() s
B! B2 -H P2) = 0 (10)
B21 R22 0 U 0

I denotes the identity matrix.
COMPARISON OF MEASUREMENT AND NUMERICAL RESULTS - CONCLUDING REMARKS

Several resonators of various shapes were buill in order to evaluate the
accuracy of the method. Each resonator was installed as shown in figure 2. The
measurement of the transfer function between the output of the amplifier and the
output of the microphone set at the bottom of the resonators displayed a maximum
whenevear a resonant frequency was reached. This peak could then be located with a good
accuracy. Vectors Py1y and U were used to compute the power absorbed by the
resonator for each frequency. The curve of the power absorbed versus frequency could
then be established and also displayed a maximum for the numerical resonant
frequency. It malched the experimental resonant frequency by less than 3% for all the
prototypes under study. In the case of the construction depth saving, quarter-
wavelength resonator discribed on figure 3, the numerical resonant frequency was 130
Hz which was also the result of the measurement performed in the anechoie room.

The advantage of the method we have described is twofold.

Unlike usual formulae working accurately only for particular shapes - cylindrical,
parallelepipedic... -, it provides with a high accuracy the resonant frequency for
Helmholtz resonators with a complex shape such as industrial resonators. Moreover,
this model can be interfaced with numerical models used for indoor acoustic prediction.
For ingtance, the absorbing behavior of an array of resonators can be evaluated in a

given room,
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Figure .2 : Experimental configuration
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Figure 3 : Modelling of a quarter-wavelength resonator
discretized with 20 20-node elements
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