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ABSTRACT

The classical criterion of Bolt for homogeneous distribution of normal frequencies in
rectangular enclosures is revisited. Coincidence of normal frequencies is considered a detrimental
factor concerning frequency and spatial regularity in sound response of enclosures. New
fundamental facts influencing normal frequency distribution are analyzed and a metric is proposed
as an efficient criterion. Merit figures are compared to Bolt's results. New areas of p,q ratios
leading to homogeneous distributions in the low frequency range are found. At high frequencies a
generally better situation is observed but some values of p and/or q and some ratios p/q lead to
clusters and "holes" of normal frequencies causing high scores of transmission irregularity.

RESUMEN

Se presenta un nuevo enfoque del criterio de Bolt sobre distribución homogénea de
frecuencias propias en recintos prismáticos. La coincidencia de frecuencias propias se considera
un factor clave de deterioro de la regularidad de la transmisión sonora en recintos. Se analizan las
causas del espaciado homogéneo de frecuencias propias proponiendo una nueva métrica cuyos
resultados se comparan con los de Bolt, localizando nuevas áreas de proporciones p,q con gran
homogeneidad de distribución en bajas frecuencias, encontrando para frecuencias superiores que
junto a una mejora generalizada, ciertos valores de p, de q, de ambos o de p/q conllevan
agrupamientos y vacios de frecuencias propias con detrimento de la regularidad de la transmisión.

INTRODUCTION

Low scores on transmission irregularity are considered a positive acoustical factor of
rooms [1]. This factor is particularly interesting in reverberation rooms where the lower frequency
bands usually involve a rather reduced number of normal frequencies. Furthermore the
homogeneous distribution of normal frequencies is a main factor contributing to increase diffusion
a condition involved in absorption and sound power measurements as described in national and
international standards.



Página 2 de 6

It is well known that the total number of normal frequencies mainly depends of the volume of the
room throw the power 3 of frequency under consideration. However in rectangular enclosures
contributions of other geometrical factors such as surface and perimeter is recognized to play an
important role in the low frequency range [2, 3].

To minimize the rather big fluctuations of sound levels inside a truncated pyramidal
enclosure of 0.42 cubic meters, usual in power measurements of telephonic rings was the
motivation of the present work. The starting idea of introducing a grating diffuser, conditioned the
use of a rectangular enclosure and the choice of the "best" proportions.

THEORETICAL BACKGROUND

It is generally admitted that diffusion hypothesis involved in geometrical-statistical
acoustics theories are satisfied in rectangular enclosures at frequencies over Schroeder's
frequency. This frequency  is given by the equation [4]:
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V being the room volume in cubic meters, T the reverberation time in seconds and f the frequency
in herzs. This condition involves a modal overlapping of, at least, 3. Under these conditions the
frequency response relating two arbitrary fixed points in the room results quite smooth. A similar
result is obtained at a fixed frequency when the position of the receiving point location varies. As
indicated, under these conditions the sound field is ideally diffuse. Therefore transmission
irregularity, defined as the difference between the sum of local maximum levels and the sum of
local minimum levels becomes low.

Mainly because of subjective effects of noise, frequencies as low as 100 Hz are to be
considered in sound absorption and power measurements in reverberant rooms. If 5 s as
reverberation time and 200 m3 as volume are admitted as usual values for reverberant rooms, the
Schroeder's limiting frequency, becomes about 315 Hz. Within this 1/3 octave frequency band
there is about 500 normal frequencies. At 100 Hz, there are only 16 normal frequencies and a
modal overlapping of 0.6. Some authors [3], studying diffusion based on correlation analysis
conclude that reasonably good diffusion is to be admitted at frequencies as low as 125 Hz, for
modal overlapping about 0.2, well below the value involved in the above limiting frequency, and with
a rather reduced number of normal frequencies, about 40 within the 1/3 octave band centered at
125 Hz. The shape of the room is argued to be the responsible factor of that behavior, and
guidelines of some standards for a proper choice of proportions is mentioned to be respected by
the rooms where experiments were conducted.

Therefore in the low frequency range a homogeneous spacing of normal frequencies
becomes of most importance to minimize transmission irregularity and, given a constant volume,
the influence of room proportions is the main factor to consider.

NORMAL FREQUENCY SPACING AND BOLT'S CRITERION

On a preliminary report [5] of more complete studies on normal frequency spacing
statistics Bolt presented a low frequency spacing index, ψ1, and a quality criterion related to the
room dimension ratios. This spacing index, related to transmission irregularity but in fact a direct
metric of statistical fluctuation in frequency spacing, is defined by the equation:
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δ being the actual normal frequency spacing and δ  the mean theoretical spacing at the space δ,
between µa and µb, of the dimensionless frequency µ=³√V(f/c), where V is the room volume, f the
frequency and c the speed of sound. Index ψ1 corresponds to µa= 0.5 and µb= 1.5. Spacing is
said to be more and more homogeneous as  ψ approaches 1, a limit situation in which every
actual spacing equals the average value spacing. As ψ increase actual spacing becomes more
and more irregular.

The following figure represents Bolt's criterion, stated in terms of the room dimension
ratios 1: X:Y, normalized to the shortest dimension. Ratios inside the clear zone lead to
"smoothest frequency response at low frequencies in small rectangular rooms" (sic, reference 5).
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Figure 1. Bolt's criterion of dimension ratios of rectangular
enclosures for homogeneous spacing of normal frequencies

The previous figure was derived from a graphic where isopleths of ψ1 were computed as a
function of the dimension ratios 1:p:q, this time normalized to the longest dimension of the room.
The border of clear zone of previous figure corresponds to ψ1= 1.5. A recomputation of ψ1, as a
function of p,q,  is represented in the following figure for a matrix of  91x91 elements. Interpolation,
indicated by color lines, is an automatic feature of the representation program used ( J ). Blue
zones correspond to low values of ψ1, increasing until red zones that correspond to the highest
values. Most outlines and values of this figure  are nearly coinciding with Bolt's figure, but some
new zones of p,q with high homogeneous distributions of normal frequencies, can be observed.
Among them the zone around p=0.45, q=0.3 is of particular relevance.

The main diagonal, p = q, corresponds to bad distributions. From that line some emerging cases
are to be signaled p=q=0.3 , p=q=0.5 and the worse that corresponds to p=q=1, the cubic room,
as it is well known.
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Figure 2. Low frequency spacing index ψ1(p,q), of rectangular enclosures.
Blue zones: highly homogeneous spacing of normal frequencies.

DISCRETE VERSUS CONTINUOUS DISTRIBUTIONS OF NORMAL FREQUENCIES

Spacing of normal frequencies of rectangular enclosures as a function of dimension ratios
p,q, and the frequency dimensionless parameter µ can be approached by the polynomial
equation,
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It can easily be observed that represents a function monotonically decreasing as µ
increases, independently of the couple of values  (p,q). Let us consider the interval 0≤µ≤3, that
contains about 300 normal frequencies, then encompassing the frequency interval where
homogeneous distribution is of particular importance. Combining all possible pairs p,q , the
resulting functions δµ/δn locate inside the limiting curves of the Figure 3. It means that normal
frequency spacing follow quite similar variations independently of  the couple (p,q), and more and
more similar as µ  increases. Double logarithmic representation indicates an asymptotic behavior
of δµ/δn towards high frequencies, as can be easily seen from equation. Also the nearness with
the statistics spacing found by Schroeder, for microwave cavities is evident[6].
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Figure 3. Continuous approach of normal frequency spacing in rectangular rooms
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When δµ/δn is computed using actual distributions of normal frequencies  µnx,ny,nz , discrete
distributions are obtained, every distribution depending on the couples (p,q). However every
discrete distribution tends, through p,q, to the associated continuous polynomial distribution. Low
scores of (δµ/δn)nx,ny,nz in an interval δµ are compensated with overscores in the near frequency
intervals and the polynomial results similar to the best fitting. Assuming the previous observation
of equivalence among all polynomial spacings the most homogeneous spacing of normal
frequencies in rectangular enclosures is obtained with the couple (p,q) that best follows the
corresponding polynomial. A particularly well adapted metric derives from the lest squares method
of fitting. If differences are normalized to the mean spacing a new index can be obtained:
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where δ   is the local mean of normal frequency spacing, corresponding to actual spacing δ, and
mean(δ ) represents the mean of d over µb – µa . Defined in this way  ψp is something similar to
the second statistical moment of δ. The lower the value of this index is the more homogeneous the
spacing becomes. The best situation corresponds to ψp=0.

Figure 4 shows index  ψp1 (µa= 0.5 and µb= 1.5).  Similarity with Figure 2 for index ψ1  is
quite obvious. Therefore both indices are nearly equivalent but ψp indicates more clearly the
relation among continuous and discrete distributions of normal modes in rectangular enclosures
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Figure 4. Like Figure 3, for the new proposed low frequency spacing index ψp1(p,q)

The influence of higher values of the frequency limits µa  and µb , has been studied
because ψp1 only include approximately the first 25 normal frequencies (the couple p,q slightly
influences this number). When the frequency limiting interval, one octave width, is translated
towards higher frequencies different figures are obtained but some general conclusions can be
derived:
a) there is a general evolution to lower values of  ψp ; an evolution to more homogeneous spacing
of normal frequencies, in a global sense, is expected
b) over the background indicated in a) emergent lines of relatively high values of ψp are found, that
correspond to lines p=constant, q=constant or p/q=constant.

Conclusion b) indicates that the simple increase of frequency do not ensures
homogeneous distributions of normal frequencies but straight liness correspoindeing to particular p
and/or q values, lead to high scores of transmission irregularities. The most significant values are
0.5 , 0.25 for p or q, and 1, 0.5, and 0.3 for q/p. Quite similar results were found by Sepmeyer[7].
For these p,q couples probability density functions of normal frequency spacing in rooms [6]
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should be interpreted in a statistical sense as average descriptions of the whole of possible
rooms.

Proper choices of µa and µb can give to the previous indices a global or local character,
assumed the number of normal frequencies to be statistically significant. Of particular interest are
local indices for 1/3 octave frequency bands.
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