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0, Introduction

Since W. C. Sabine founded Room Acoustics 100 years ago, numerous authors have
proposed different approaches to the characterization of sound fields in rooms. These
approaches vary from purely energetic analysis, only interested in the total energy balance
in a room, to more complex analysis which aim at describing the sound field at any
position in the room. In the past few decades, the increasing power of computers has make




it possible to envisage full computation of a sound field in a room, but it still remains
beyond our reach in the case of big rooms, such as concert halls or theatres. Therefore, a
survey of the different theoretical descriptions of sound fields in rooms is necessary at the
beginning of a symposium devoted to advanced research into concert halls and auditoria.

In the first Section, the different approaches to room acoustics are presented, sketching the
procedures and the main results. The second Section is devoted to recent achievements in
reverberation theory.

1. The theories of room acoustics
1.1 Modal analysis

Historically, modal analysis was the first attempt to derive Sabine's reverberation theory
from the wave equation. It was introduced by Van Den Dungen (1934), but its definitive
formulation was given by Morse & Bolt (1944). It can be found in several textbooks
(Morse & Ingard 1968, Cremer et al. 1982, Bruneau 1983), so we just recall the main
results.

1.1.1 General formulation

Sound fields in room can be described in both frequency and time domain. In both cases,
the room is ascribed a volume (V), bounded by a wall (S) and containing a source Q (or q),
as shown in Figure 1. The sound field is then the solution of a differential equation within
the

volume, with boundary conditions on the surface of the wall. In the time domain, initial
conditions must also be given, In the following, capital letters are reserved to the
frequency
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Figure |. Geometry of the problem



domain, the spatial coordinates are defined as 7 , frequency by @=2nf, and time by t. ¥
and y are the frequency and time solutions respectively:

frequency domain time domain
AY + k'Y = -0(F, w) in (V) er,r]—czéf, M:r,t‘}=—q{r,f) (1)
W +ikH(F,w)=0 on (S)
a,ulr.t)+c' Blr 0).6,ulr.t)=0 (2)
initial
conditions gy = uApt)=tim___ 3 ydr.t)=0 &)

where c is the speed of sound, k=w/c the wave number, and B the specific admittance of
the wall.

The frequency solution can be decomposed on an orthogonal basis of eigenvectors, the
eigenmodes ‘¥, giving the following expression for pressure:
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where p is the mean density, and where ‘¥, (7, )is the eigenvector corresponding to the
gigenvalue knz{m} of equations (1) and (2), normalised by:

[, ¥ ¥, av =v A, ()8, (5)

The time selution is then given by the Fourier transform of the frequency solution:
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1.1.2 Point like source

For a point like source, expressions (4) and (6) can be further developed. The frequency
solution leads to the steady state regime associated to the source Q(F, @) = O, 8E =% )
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The pressure is maximum at the poles » =« + iy, , solutions of;
k! (@, +iy,)=(®, +ir,) Ic*
As v, is small compared tﬁ @p, , we obtain to the first order in y,, :
k, (o, +iy,) =k, (@,)+iy, k(,)
similar to:
k(w,+8) =k (@,)+ck,(w,)
Combining equations (9) and (10), we can approximate each pole by:
¢k (@, +8)~(w,+0) ==2@,(c-iy)|1-ck,(,)]

leading to a maximum at e=0, and to a resonance width of 2y, (Figure 2).

Figure 2: The eigenmodes of the steady state regime

The time solution for a continuous source turned off at time t=0
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[q(F.t)=d(ry —F)sinw t, t <0;q(F,t)=0,f =2 0] gives the transient regime. The
integration on & can be carried out by the residu technique (Morse & Ingard 1968),

leading to:
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where B exp{il '} and C _exp{if2_} are complex coeflicients given by the values taken by
the eigenfunctions 'V, (7, @) at positions 7 and 7, and at frequencies @, (t<0) and it oy 4 4

(t=0). @ +iy, are the poles defined by equation (8). Equation (12) plainly shows that cach
pressure mode decays exponentially after the source has been turned off.

1.2.3 Approximate solutions

In practice, expressions (7) and (12) are inextricable, even if only one mode is considered.
Further, the existence of eigenmodes cannot be proved mathematically as soon as the wall
admittance f§ has a non vanishing real part, that is, as soon as walls are absorbing, Morse
& Ingard (1968) therefore proposed a two step perturbation methaod.

The first step consists in computing the eigenvalues of a slightly different room for which
mathematical theorems prove the existence of eigenfunctions: typically, a room (V) with
hard walls (S;), depicted in Figure 3. The eigenvalues of the new rooms are thus given by:

(A+n)¥) =0 in V, (13)
8.9 =0 on Vy (14)

The eigenvalues build up an orthogonal basis normalised by:

_”_L ¥, dV =V, A6, = _[_[L‘i’f‘{'j av (15)

to the first order. Applying Green's theorem in the original volume (V) to the original
solution *¥(7) and to the new eigenvalues, and letting W(7) tend toward ¥,, that is, k?
toward l{“2 and Q(r) toward 0, leads to an expression of the original eigenvalues to the
second order in ¥ :

1

k(@) =nk+
n (@) VAP

[, 2 [ikp+ 3,)2dS = 7, 421, <ikf+3,>  (16)

where notation <a> corresponds to the surface integral dS
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Figure 3: The geometry of the perturbated problem

Writing B(F, @) = &(F, ) +io(F, @), and setting in the surface integral k=k _=o_+iy, we
can separate the real and imaginary parts of the poles:

Cemn4<mmotn) g > Tr=<n f)> a7

Since 7, is linked to the decay rate of the mode afier the source is turned off (see equation
12), this decay rate is in first approximation proportional to the mean value taken by the
real part £ of the specific admittance p on the wall:

SN SAS = HS"P,? w4 (18)

Therefore the real part of the admittance must be positive in all physically relevant cases.

In a second step, the original eigenvalues are also approximated. These eigenvalue satisfy
the following system to first order in ‘¥ %:

(A+kH)¥, =0 inV (19)
G, =—ik BY, =—ik By on S (20)

Adapting to ‘¥, the expression (4) for ‘¥'(7), we obtain:

O (ikf+ 5, )W odS
"PH(F]=T:(F)+EI'L !(‘ JB ) ‘P:[F] @n

o Vol [kl -nl



Therefore, the wall admittance couples together the eigenmodes of the hard room,
according to the integral:

[[ e cikp+a, yvids, mEn (22)

However, the coupling does not modify expression (16) for the original eigenvalues.

The coupling between eigenmodes introduced by a wall admittance is the major result of
modal analysis. It explains how the energy contained in each mode can migrate in the
adjacent modes, thus regulating the decay rate of all adjacent modes to an average value
(strong coupling). The computation of this average decay rate remains nevertheless an
impossible task.

1.2 Statistical analysis.

Originally, the statistical analysis of sound fields in rooms was restricted to the transfer
function, that is, to the random superposition of modes. The name of Schroeder is attached
1o this analysis (see e.g. Schroeder 1954a, 1954b, 1969). More recently, statistical analysis
of impulse responses, that is, of transient phenomena, have been available (Polack 1988,
Jot 1992).

1.2 1 Eigenmode density

The following presentation is only valid in rectangular rooms, but H. Weil showed in 1911
that the result remains valid for rooms of arbitrary shapes. Only the leading term of the
development in powers of the frequency is given here: the nest terms depend on the

geometry of the room, as interested readers can read in Bloch & Balian (1970).

In a rectangular room, eigenfrequencies are given by:

5 keY ne ﬂﬂi ch
e B Eoml i ol e (23)
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In other words, eigenfrequencies are distributed on the nodes of a lattice, each cell of
which contains an elementary "volume" of the frequency space (see Figurc 4).
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where V={, £,.£, is the volume of the room.
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Figure 4: The lattice of eigenvalues in a rectangular room

As a consequence, the number of eigenfrequencies contained between frequencies v and
(v+dv) are given by the number of lattice nodes contained in the portion of sphere of
radius v and thickness dv. Actually, as shown in Figure 4, the cigenfrequencies are only
distributed over one eighth of the sphere, leading to the following expression for the
volume of the portion of sphere:

1= 42“ dv (25)

Dividing this volume by the volume of an elementary cell gives the leading term for the
distribution of eigenmodes between frequencies v and (v+dv) :

4V ot

dN=v,l 0, = ——duv (26)
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Thus, the number of eigenfrequencies increases, in first approximation, as the square of
the frequency. This leads to separate two frequency regimes:;

- at low frequencies, eigenmodes are isolated, because their density is low. Modal analysis
is fully relevant, as proved by the practice of reducing low frequency resonances by
modifying the wall impedance at pressure maxima (Helmholtz resonators).

- at high frequencies, many modes are overlapping. Modal analysis must be understood in

a slatistical manner: we enter the regime of "large rooms", or Schroeder regime, where
other techniques proves more efficient in practice (see Section 1.3).

The limit between the two regimes 1s given by Schroeder frequency:
fs =2000 JT,I’V (27)



where T 1s the reverberation time which is linked to the width of the modes (see below
Section 1.2.3). Expression (27) corresponds to a superposition of 3 modes within a
frequency interval equal to their average width.

1.2.2 Transfert function

At high frequencies (Schroeder regime), equation (7) for the steady state field can be
further developed, leading to an estimate of the mean squared pressure in the room.
Firstly, the squared pressure is averaged in the whole room, taking into account the
orthogonality of the eigenmodes:

¥, /A,
{pf,..,{m})ﬁ—flp.,{ )| av (m"] [N} Zl o) (28)
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Secondly, the summation is carried out on all eigenvalues belonging to a small frequency
interval around @=2nv, These cigenvalues are given by equation (16), with the
simplification that the volumes (V) and (V) are equal so that normal derivatives vanish
on the boundary, that is:

k2 (@) =n] o jj WP k)W = n} - %[g"{m]—m (@)] (29)
l}
where we have introduced the quantities:

o,y 23F5  and g ~W[n-o,/c] ~855  (30)
c

g, measure the frequency shift of the eigenmode. In expression (28) for the mean squared
pressure, the denominator becomes:

2 1 2 k " k TRT
ki =k @) =(n2 -k =Byt () 31)

Since the density of eigenmodes is high at high frequencies, the summation can be
replaced by an integral on eigenfrequencies weighted by their density, leading to the
following expression for the mean squared pressure when the a_ are considered as
constant:

pzm

(Prm(@), =55 |Q.[ EG)=11,/a (32)



Equation (32) was first obtained by Sabine, using energy considerations. The mean
squared pressure is thus inverse proportional to a quantity representing the amount of
absorbing material contained in the room. This quantity has the dimensions of a surface,
as can be seen from expression (30).

Equation (32) constitutes a very imporiant results since it shows that the mean squared
pressure in a room is independent of the distribution of eigenmodes. Furthermore,
Schroeder (1954) was able to show that this independency subsists for the fluctuations of
the mean squared pressure, that is, for the fluctuations of the transfer function: their mean
amplitude is 5.6 dB in every room. The method used by Schroeder essentially amounts to
the statistical superposition of eigenmodes, that is, he assumed their phases as randomly
distributed, in accordance with experiments. Using the central limit theorem, the resulting
transfer function can be considered as a complex Gaussian process with a mean value
equal to zero and a variance given by equation (32). Many other average quantities can be
deduced from this process.

1.2.3 Reverberation

Reverberation takes place in a room when a source is suddenly turned off. The case of a
monochromatic point-like source has already been analysed in Section 1.1.2 (equation 12);
each eigenmode decays while oscillating at its eigenfrequency, with initial phases and
amplitudes depending on the corresponding eigenfunctions.

As for the steady state regime, it is however possible 10 estimate the mean value taken by
the squared pressure in the whole room at every moment. Due to the othogonality of
eigenmodes, only quadratic terms subsist in the sum, leading to:

(Ph)), =

2 |R.| e cos (@, 1 +Q,) = *;"Z |R,[ cos’ (@, £+Q,)e @ (33)

where the coefficients a | are still given by equation-(30).

If we assume a_ and y, as slowly varying with frequency, the exponential term can be
taken out of the sum, and the decay of the mean squared pressure becomes:

(Pr(@), = P erp{-%r} 34)

Expression (34) was also obtained by Sabine originally. it allows the computation of the
reverberation time T - the time taken by the mean squared pressure 10 decay by 60 dB - by
means of Sabine's formula:

T= ['.'.lf:'-E (35)
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Expression (34) relies therefore on two assumptions. First, we assumed a nand y, as
slowly varying with frequency, but Jot (1992) has shown, in the case of reverberation
filters, that y, slowly varying with frequencies are essential to avoid a decay dominated by
a few modes only. Therefore this assumption is likely to hold in practice, though it has
never been proved. Second, we have considered the quantity

Py =(1/2)) R, cos (a,t+%,) as constant. This approximation is only valid when the
sum covers & large band of frequencies. For narrow bands of frequencies, an oscillatory
behaviour subsists for p;, . This is consistent with the practice of measuring sound decay in
large bands of frequencies: the octave bands. No improvement can be achieved by
choosing narrow bands: reverberation essentially is a statistical process.

1.2.4 hastic models for impulse se8.

In fact, all the statistical properties of the transfer function (see Section 1.2.2) translate
into the time domain, that is, in the impulse response: the random superposition of
cigenmodes translates into a Gaussian random process, with zero mean and a variance
decreasing with time according to Sabine's formula (35). Further, the mean frequency
response can be recovered if the process is Markovian, that is, if a proper correlation is set
between successive samples of the process. This correlation introduces a new parameter,
the equivalent statistical bandwidth B of the response, defined by:

B= ﬁ [I:]H(m}r me /[I:|H{w}|‘ dm] (36)

With help of this parameter, many statistical properties related to "noise" rejection - in fact
the rejection of random fluctuations - can be established (see Polack 1988), such as the
emergence of the initial peak of the autocorrelation function of an impulse response (35 dB
in the case of Figure 5 measured in Espro at IRCAM, Paris). A similar magnitude of
rejection is predicted for the modulation transfer function, that is, the Fourier transform of
the squared impulse response, explaining why this function gives rise to a very robust
measure of speech intelligibility: the Speech Transmission Index

However, the Gaussian model for the impulse response, even in its Markov variant, suffers
from a major drawback: it cannot account for reverberation times varying with
frequencies, since the correlation between samples is fixed. In order to obtain
reverberation times varying with frequencies, the variance of the process must be defined
by a time-frequency distribution, slowly varying with frequency and exponentially
decreasing with time. Polack (1988) proposed the mean Wigner-Ville spectrum, defined as
the ensemble average of the Wigner-Ville distribution:

W, (t, @) = Jh(r ~TI2) h(t +7/2) e *dr

. (37)
=(1/2m) [H (@-Q/2) H@+Q/2) ™ dQy= W, (t, @)



which is directly linked to the mean time and frequency quadratic responses:

anafw¢e) de k@) .  [W o) d=|Ha)| (38)

Notc that a Wigner-Ville distribution can take negative value, hence the necessity of using
the WignerVille spectrum.
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Figure 5: Autocorrelation function measured in ESPRO
upper curve: mean squared
lower curve: mean value

In his seminal thesis on reverberation filters, Jot (1992) replaces the Wigner-Ville
spectrum by the future running spectrum of Page-Levin, defined by:

e 2
B (I,f)=-"§|£ h(ﬂe'*”*f*dr[ (39)

which generalises Schroeder's reverse integration since:

4 w0 2
| Ranas= [L,ﬁr{ne'ﬂ'ﬂ”dfj (40)

Besides, the future running spectrum still satisfies relations (38) and only takes positive
values. Jot's analysis of existing rooms with this distribution shows that above Schroeder
frequency (equation 27), smooth “"energy decay reliefs" can be calculated from reverse
integration of the future running spectrum by estimation of the reverberation time of each

narrow frequency band (Figure 6).
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Figure 6: Energy decay reliefs in a studio
above: measured with the fiture running spectrum
belaw: smoothed by reverberation estimation (from Jor 1992)

1.2.5 Distribution of arrivals

The stochastic models presented in Section 1.2.2 suffers one major drawback: it is only
valid if many pulses, or arrivals, are sent back to the receiver simultancously by the room.

Bolt et al. (1950) have studied the density of arrivals in a rectangular room. This density
can casily be deduced from tiling the Euclidian space with all the images of the room



obtained by mirroring it on its walls (Figure 7), and from the corresponding image
sources. Each arrival reaching the recciver between times t and (t+dt) originates therefore
from one of the image sources located between the spheres of radius ct and ¢(t-+dt) centred
on the receiver position. The same procedure as in Section 1.2.1 for the modal density can
be used since each image of the room only contains one single image source, leading to a
density of arrivals equal to the ratio of the volume of the portion of sphere ct and thickness
c.dt to the volume (V) of the room, that is:
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Figure 7: Tiling the Euclidian space
{3 source; X: image sources)

In order to approximate the impulse response with a Gaussian process, at lcast 10 arrivals
must fall within the observation time. According to the size of the observation time, the
mixing time, defined here as the time after which a minimum of 10 arrivals always fall on
the receiver during the observation time, can differ. Thus, for Espro at IRCAM, Paris, a
rectangular room of 3545 m? in the usual configuration, the mixing time is:

1.5 s for 33 ps observation time (sample time in Figure 8a)
270 ms for 1 ms observation time (sample time in Figure 8b)
55 ms for 24 ms observation time.

The last observation time correspond to the time constant of the human hearing and bear
no connection with Figure 8. However, the corresponding mixing time agrees well with
visual estimation on Figure 8: tiling the Euclidian space with the images of the room leads
to an underestimation of the mixing time.

In fact, exact tiling of the Euclidian space does not happen for every room. In general, the
image sources obtained by permutations of the reflecting surfaces do not coincide, and the
number of image sources grows exponentially. However, most of the image sources are
hidden behind some walls for any receiver position. As will be explained in Section 1.3,



hidden image sources are usually discarded, which amounts to discarding diffracted rays.
The question remains open whether hidden sources should be kept or not, and in the
affirmative, how to account for them.
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Figure 8: Impulse response measured in ESPRO
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b) mean squared {above} and mean (below)



1.3, The peometrical approach.

Of all the approaches to room acoustics, geometrical acoustics is certainly the most
intuitive and the oldest one. It rests on the analogy between acoustics and optics, and
remains the main techniques used for computer simulation of room acoustics.

1.3.1. Geometrical acoustics

By analogy with geometrical optics, geometrical acoustics assumes that sound propagates
along lines called sound rays. However, unlike optics, the wave properties of sound can
never be neglected: to a greater extent than in optics, geometrical acoustics therefore
considers the propagation of wave fronts, which usually are equiphase surfaces, along the
rays. These rays must satisfy Fermat principle, that is, the acoustical path linking two
points always is an extremum.

Geometrical acoustics proves particularly useful at high frequencies where wavelengths
are small in comparison with room dimensions. Geometrical acoustics can therefore be
viewed as a complement to modal analysis, ill-adapted to high frequencies where mode
superposition leads to statistical fields (Section 1.2). In fact, this complementarity is
fundamental: wave fronts and rays can be directly deduced from the wave equation by
means of Hadamard's characteristics theory (see e.g. Courant & Hilbert 1962). There is
therefore total equivalence between geometrical and wave acoustics.

In the general case, rays satisfy nonlinear equations that must be solved numerically (see
Pierce 1981). [n room however, where air is an homogeneous isotropic medium, these
equations are greatly simplified, and rays reduces to straight lines perpendicular to wave
fronts. The latter propagate at constant speed - the speed of sound - along the rays.

This simplified description is considered in most applications: a wave front is followed as
it propagates inside a room and undergoes multiple reflections on the walls. This
propagation can be assimilated to the uniform rectilinear mouvement of a point - a sound-
particle, or phonon - in the room (Polack 1992). This mouvement has received
considerable attention from mathematicians because it constitutes one of the simplest
examples of dynamical systems: billiards. Billiards display many interesting statistical
properties, including chaos.

1.3.2 Sound intensity.

At its elementary level, geometrical acoustics only traces rays in the room, assuming
specular reflections on the walls. In the old days, rays were traced on plans and sections of
the room, but elaborate three-dimensional computer programs have been recently
developed (Epidaure, Odeon, etc.) that make it possible to predict acoustical parameters at
design stage.



The variation of sound energy along a ray can also be computed by considering a tube of
rays instead of one single ray. During propagation, the cross-section of the tube varies: it
can be shown from the wave equation that sound intensity along the tube is inverse
proportional to the cross-section. Taking also into account phases, given by a combination
of tube lengths and frequencies, the acoustical pressure can even be computed everywhere
in the room and the whole sound field reconstituted. This last step is not implemented in
actual programs because of the enormous computing resources it demands.

1.3.3 Caustics

At some spatial positions, the cross-section of a ray tube may vanish, leading to diverging
sound intensity. Such position are located in the vicinity of sound field singularities, called
caustics or focal lines. More precisely, caustics are envelopes of ray bundles crossing on its
vicinity (Figure 9). Caustics constitute therefore so-called "optical” boundaries separating
an "illuminated" zone from a "shadow" zone. In shadow zones, geometrical acoustics
cannot account for the sound field. It must be extended inte the Geometrical Theory of
Diffraction (GTD, see e.g. Pierce 1981), and even in the Uniform Theory of Diffraction on
the caustic itself (an asymptotic expansion of the intensity in the vicinity of singularities,
see Ludwig 1966).

Figure 9. Rays and caustic (bold line)

As regard wave fronts, they also display singularities on caustics (reversion points).
Alternatively, this singularity can be viewed as a phase shift of £n/2 where the ray grazes
the

caustic: passing through a caustic corresponds 1o a spatial Hilbert transform. Very
recently, Mortessagne (1994), in his seminal thesis on the semiclassical approximation in
room acoustics, has been able to include caustics in geometrical acoustics, thus cbtaining
very accurate impulse responses (Figure 10).

1.3.4 Image sources

Instead of considering rays or ray tubes emitted by the source with specular reflections on
the walls of the room, the images of the source through multiple reflections on the wall
can be considered together with all the rays linking these images to the receiver. Due so
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Figure 10: Semiclassical approximation of an impulse response
foriginal in dotted lines; from Mortessagne 1994)

successive reflections, the number of images grows very quickly, in fact, exponentially, but
most images are "hidden" for the receiver, However, hidden images emit diffracted rays in
direction of the receiver, and the Geometrical Theory of Diffraction allows to evaluate the
intensity carried out by these diffracted rays: it fades out very quickly, in fact
exponentially. As a consequence, diffracted rays are neglected in most applications
without checking whether their large number do not compensate for their fading . Note
that the rays linking image sources to the receiver precisely give rise to the arrivals
analysed in Section 1.2.5, thus stressing the role played by diffracted rays to increase the
arrival density. The semiclassical approximation (Mortessagne 19947 is also constructed
upon these rays, but cannot be use at its present stage to either validate or refute the
discarding of diffracted rays.

1.3.5 Statistical properiies

The geometrical approach also admits a statistical analysis within the frame of billiard
theory. In Section 1.3.1, we mentioned that billiards constitute one of the simplest
examples of dynamical systems. The statistical analysis of billiards is postponed until
Section 2 where it will be used as the foundation of recent advances in reverberation
theory.

1.4. Energy analysis

Rebulled by the complexity of the preceding analysis, many acousticians turned to more
phenomenological approaches based on energy balance, Historically, energy balance was
first considered by Sabine 100 years ago when he studied the phenomenon he called
reverberation, turning him into the founder of modern room acoustics.

l.4.1 The synthetic theory of reverberation




Introduced by Bosquet (1967), this theory constitutes the framework of any energy analysi:
of room acoustics. It simply consists in applying Noether theorem to the wave equation,
hence obtaining the energy balance anywhere in the room.
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Figure 11: The geometry of Noether thearem

Multiplying by &, w(7,f) the wave equation (1) in (V) - see Figure 11 - and using product
rules for derivation we obtain the local energy balance:

a,{i
2

which can also be written with the help of the instantaneous sound energy density wt, the
sound intensity vector 7 . and the work = of the sound sources:

AW

&

LI z
L] }uﬁ.[aw.w}ﬁqaw} (42

Aw, - V.1 =TI(F, t) (43)

Integrating the local energy balance over the whole volume (V) of the room leads to the
lotal energy balance in the room:

8 |, wdv — [ T.nds =11(1) (44)

where I is the total work of the sources, and /, the sound intensity leaving the room
through the walls (S), that is, the sound intensity absorbed by the walls. This absorbed
intensity can be linked to the intensity /, incident on the wall by introducing the
absorption coefficient oo and its mean value @ on the wall:



I.=al, ; V& wm{f}—ﬁjsﬁ.fﬂ ds =TI (45)

where we also introduced the mean instantaneous energy density w,,(t).

Within the frame of the synthetic theory of reverberation, evaluating the energy balance
reduces to the following problem: find the relation linking sound intensity I and
instantaneous sound energy density w, everywhere in the room. By analogy with fluid
mechanics, we call behaviour law any such relation, whereas the energy balance is a
conservation law, As in fluid mechanics, behaviour laws are approximations deduced from
phenomenological considerations, the most commons of which are now reviewed.

1.4.2 The diffuse field approximation

The so-called diffuse field approximation can be traced back to Sabine's first work on
room acoustics. It rests on two assumptions:

* the instantaneous sound energy density takes the same value in the whole room;
* the sound intensity vector has the same magnitude in every directions.

With these two assumptions, intensity and energy density can be linked together by means
of the following behaviour law:

[f|=-%.c . where w=w,@® (46)

T ads=2¢s (47)
T [

that is, on the wall, only every fourth direction points toward the wall, corresponding to a
solid angle of m steradian. The total energy balance becomes:

=
4V

(48)

Using instead the quantity of absorbant a = a5, the total energy balance leads to
expression (32) obtained in Section 1.2.2 by statistical analysis of the steady state regime,
provided that sound energy is considered as evenly distributed between potential and
kinetic energies (1.e., cplm::--—wzj. In a similar fashion, integrating the total energy



balance directly leads to the exponential decay of the reverberation field afier the source
has been turned off:

wit) =w, exp{ —%r} (49)

an expression similar to expression (34) of Section 1.2.3; and therefore also leads to
Sabine's formula (35) for the reverberation time.

Thus, the diffuse field approximation leads to simple expressions for both steady state and
transient regimes. This explains why it is so widely used and abused (see Vér 1978), even
when its two assumptions are blatantly breached. In fact, the diffuse field approximation is
only valid at low absorptions, since a simple argumentation shows its assumptions to be
incompatible with any absorption. In the presence of absorption, the total energy balance
(44) stipulates that the sound intensity flow be non vanishing on the absorbing wall: some
cnergy therefore "migrates” from the source to the walls. As a consequence, the sound
intensity vector, which locally describes this migration at all pesitions in the room, cannot
vanish on average as predicted by the uniform distribution of intensity in all directions: the
second assumption of diffuse sound fields obviously is erroneous .

1.4.3 Propagation

Aware of the limitations of the diffuse field approximation, many acousticians have tried
to improve the behaviour law. Almost all these trials rest on the geometrical approach:
sound fields are built up by many rays which carry all the sound energy in their directions
of propagation. The behaviour law then takes the very simple form:

F=wé (50)
where ¢ is the speed of sound oriented in the direction of ray propagation.

In Section 1.2.5, we defined a mixing time as the time after which the impulse response
can be described by a random process. Anticipating on Section 2, the mixing time can
alternatively be defined as the time after which we no longer know the position or the
direction of any ray issued from the source. The quantity of energy absorbed by the walls at
the following instant is proportional to the energy flow incident on the wall, to which only
contributes the impinging rays, that is, the rays located in a thin layer around the wall and
properly directed. As in kinetic gas theory for evaluating the static pressure, the probability
to obtain one more reflexion during the next lapse dt is:

—_— it (51)



Two further assumptions lead to Sabine’s energy balance: the uniform distribution of
energy in the whole room, so that the energy carried by all the rays be the same at any
given time; and above all, an instant mixing time, meaning that at the next instant, we do
not know where is the ray, so that the probability of reflexion still is given by equation
(51).

In fact, if the mixing be instant and all rays carry the same energy, the energy takes on
average a constant value in the room at any given time. The assumption of instant mixing,
obviously erronecus as shown in Figure 8, is therefore the central assumption of the diffuse
field approximation.

1.4.4 Wall diffusion

If rays are propagating along straight lines and if the behaviour law is given by equation
(50) along each ray, how can a diffuse sound field be obtained ? This question seems
paradoxical. but only because the role played by the walls is underestimated: diffusion in a
room is created by its walls. As a conseguence, many authors proposed to reject the
assumption of specular reflection on the walls and replace it by a "diffuse” reflection law:
Lambert law. Lambert law stipulates that the reflection angle of a ray on a wall is
independent on the incidence angle and is distributed on the whole half space, and that the
sound intensity of the reflected ray is proportional to the solid angle at which the moving
point sees the wall (Figure 12):

cosd

i =B,—=dS (52)

mr
where (cos8/r?)dS=d2 measures the solid angle at distance r from the wall for the slope 6
of the ray, and where B dS=I ,cos0,dS is the instantaneous incident energy flow on the
wall. Tn other words, each sound-particle can follow several paths afier reflection, which is
incompatible with dynamical systems as will be seen in Section 2. Lambert law is therefore
exclusive of the most recent developments in reverberation theory.

Figure 12: Lambert law

Lambert law reduces the energy balance to a surface integral. At each instant, the surface
element dS' (see Figure 13) receive a flow B(F')dS'and emit in the whole half-space the



flow B(7")[1-a(F')] where « is the absorption coefficient on the wall. The portion of this

flow emitted in each direction is given by Lambert law, that is, for the surface element dS
of Figure 13:

cos
aR?

di(R,6) = B(F')[1- a(F")] ds" (53)

Summing the contributions from all the surface elements, the total instantaneous flow
received by element dS becomes:

cos & dS’

" ds o i
84S = [| cos@.dI(R,0)dS = ?_[L[r -a(F)] BF) cos 05— (54)
and we obtain Kuttruffls equation:
8(7) -i_[j [1- a(7")] B(F") cos 0.4 (55)
=2k F :

Figure 13: The geometry of Kuttruff's equation

Kuttruff's equation is defined in the time domain. It take into account the flight times

between the different wall elements. Together with the behaviour law [ = w& it allows the
calculation of the sound energy density at all times throughout the room. When restricted
to the reverberation field, it can be further simplified by the assumption that the spatial
energy distribution does not change during reverberation, but only its level. This
assumption is perfectly compatible with the total energy balance (44). Therefore, the flow
received at each instant by each surface element is a fraction, uniform on the whole

surface, of the flow received at the previous instant. Setting #(F) = AB(F) with A<l, we
obtain an integral eigenvalue equation:



1
—-— — a7 BF QY 5
AB(F) —jL{l alF ]] (7') cos .40 (56)

The eigenvalue A describes the energy fraction re-emitted at each time and is formally
equivalent to a mean reflection coefficient: A=1- a.

Breaking the surface in finite elements (boundary elements), it is possible to numerically
solve equation (56). Notice however that B(7)is calculated at different times in both sides
of equation (56) to account for propagation: it leads to keep past time in memory - except
in the case of steady state regimes - that is, to describe the sound field by a Markov process
{Gerlach 1975, Malcurt 1986).

Beside the time memory, the main drawback of wall difTusion is that it does not explain
the transition from specular reflection to Lambert law. In fact, all demonstrations of
Lambert law are statistical: they assume the sound energy to reach the walls from all
directions with the same intensity. Therefore, there is no wonder that the same energy
leaves the wall in all directions with the same intensity. Lambert law cannot explains how
diffusion gradually sets in a sound field. Notice that wall diffusion is sometime called
radiosity.

1.4.5 Mathematical diffusion

Before concluding this section, we wish to compare the assumptions of diffuse sound fields
with those of mathematical diffusion which governs the macroscopic propagation of heat.
At microscopic level, molecules collide as they move, leading to a random movement call
Brownian movement. Whereas molecules collide with each other, sound particle collide
with walls: we therefore need to consider the multiple images of the room obtained by
mirroring it on all its wall to push the analogy further. As said in Section 1.2.5, the
different images of the room do no exactly overlap in the general case, and the network
butlt up by the walls covers the whole space eventually. In this limit situation,
mathematical diffusion could make sense in room acoustics.

Mathematical diffusion is described by a behaviour law such as:
I =wé+ 6w (57)
which lead to a diffusion equation when combined with the local energy balance (43):
8 w—&.Vw—8Aw = TI(F, ,t;) (58)

This equation admits an analytical solution for an impulsive point-like source located at
origin:



w(r,f) = exp{—(r—ct)? 145t} (59)

1
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As lime goes, the spatial extension of the solution, measured by o= 21,’ ot increases. After,

sufficient time, the solution covers a volume larger than the room: diffusion is then
complete.

However, mathematical diffusion has never been applied to room acoustics yet, probably
because of the difficulty to define the diffusion coefficient 8. Nevertheless, it is easy to see
that, for ¢ =0 and & very large, mathematical diffusion leads to results equivalent to the
diffuse field approximation: energy instantaneously diffuses in the whole room, leading to
a uniform energy density w in the room in first approximation. Simple calculations leads
to the local intensity flows through the walls, and to Sabine's equation when introducing
absorption on the walls. As for the diffusion equation itself, it does not introduce any
absorption within the room

2. Recent developments in reverberation theory
Recent developments in reverberation theory (Polack 1992, Mortessagne et al. 1992 and
1993, Mortessaone 1994) are all based on billiard theory, that is, on the uniform

rectilinear movement of a point in a bounded space with specular reflections on the walls
(see Section 1.3.1). The whole Section heavily borrows from Polack (1992).

2.1 Dynamical systems and billiards

Any dynamical system is defined by three elements (Gallavotti 1976);

* a phase space M = VxS2, where V is the volume of the billiard and S2 the unit three-
dimensional sphere, describing the position r as well as the direction, represented by a
solid angle Q2 & S2, taken by the point at any time.

* a group of automorphisms 8, in M, functions of a parameter t, defining the trajectories in
the phase space. For billiards, t is the time, and the transformation St is obtained by
following the running point initially at (r,C2) along its uniform rectilinear movement and
specular reflections on boundaries until it reaches a new position (r',€2") at time 1.
Exchanging initial and final positions while inverting direction, that is, while reversing
time, obviously builds the reverse transformation S;!=s, , . It is thus straightforward to
show that:

S,.5s=35,5 Se=1d, Vs, teR (60)

* Thus the transformations S, build a group.



* a measure p, defined on the phase space M, and invariant by the transformations S, that
is, for all p-measurable subset A of M:

H(S, A) = p(A) (61)

Obviously, the usual Lebesgue's measure on M:

where 4x is the measure of 52, is invariant by the transformation S, (Gallavotti 1976).

As can be seen from the previous definition, billiard theory neglects the interaction
between rays: it therefore neglects caustics and diffraction, just as geometrical acoustics,
and can only give a high frequency approximation of room acoustics. However,
Mortessagne (1994) has shown that the semiclassical approximation extends the results of
billiard theory toward the low frequencies.

The best known billiards are the rectangular billiards where almost all trajectories reach
almost all positions, but only take 4 different directions in two dimensions (Figure 14),
that is, 8 directions in three dimensions. Other shapes have also been investigated, such as
polygonal smooth convex billiards, and even concave billhiards, with special attention given
to their statistical properties.

Figure 14: A rectangular billiard

2.2, Statistical properties of billiards.

The statistical properties of billiards make it possible to give an answer to the question:
where is the ray located in phase space, that is, both in position and direction, after a given
lapse of time 7 The first statistical property, ergodicity, considers only one trajectory: along
almost any trajectory of an ergodic billiard, the running point spends equal time in the
vicinity of each position and each direction (Joyce 1975). Mathematically, it expresses that
phase space average is equal to time average for all measurable functions (Sinai 1976,
Gallavotti 1976). Let fix) be the time average of a function f, taken along the trajectory



issued from point x=(r,Q) of the phase space M, and f* the (phase) space average of f,
respectively defined by:

.
TG = fim o [r@Sxde,  f = [ fdut) (63)
0 A

then ergodicity means:;

f(xy=r" (64)

for almost all points x of M. In other words, the probability to reach any phase space point
is the same,

A stronger statistical property, mixing, involves two different observation times along a
group of initially adjacent trajectories, and can therefore be considered as a correlation
property: if we wait long enough between the two observations - strictly speaking, an
infinitely long time - two initially adjacent trajectories separate completely and spread over
the whole billiard (Joyce 1975). Trajectories can thereafier be considered as statistically
independent, and no one knows any longer the position or the direction of the running
point. Mathematically for all pairs of measurable functions (f,g):

Jim — Jf(s N du= [ 1) duf gy (65)

Mixing billiards constitute therefore a subset of ergodic billiards. Though more restrictive
than ergodicity, mixing is more fruitful: it makes it possible to define a mixing time as the
time after which mixing has occurred. Strictly speaking, this time is infinite, as shown by
definition (65), but can be rendered finite within a given tolerance margin. Notice that this
definition of mixing time supersedes the one given in Section 1.2.5,

Billiards can also be characterized by their entropy. Directly linked to ergodicity, this
quantity can be shown to be related to the logarithmic rate of divergence of trajectories
(Benettin & Strelcyn 1978): the Lyapunov characteristic number. Entropy, therefore,
involves at least two trajectories. The practical importance of entropy arises from the fact
that only mixing billiards have strictly positive entropies (Arnold & Avez 1967) and
Lyapunov characteristic numbers (Benettin & Strelcyn 1978). On the other hand, non-
ergodic billiards have Lyapunov characteristic numbers and entropies equal to zero. No
simple characterisation exists for non-mixing but ergodic billiards.

:Smce intensity variation along a ray is inverse proportional to the cross-section of a tube
| built around the ray (sec Section 1.3.2), an exponential divergence of rays leads to an
‘exponential decay of energy along any ray. In order to conserve energy in the room, the

! number of arrivals must increase exponentially with time: this is strongly reminiscent of
l{he diffracted rays of Section 1.3.4.



Energy decay function and diffusion

In order to build the energy decay function, we first need to chose a source. In
mathematical terms this amount to choosing a certain function s(x) defined on the phase
space M. Hence, not only the position of the source in the room has to be defined, but also
its directivity. The latter is particularly relevant since all physical sources do indeed
radiate differently in different directions. The same applies to the receiver, which occupies
a certain volume in the room as well as possesses a direction dependent sensitivity: it can
also be described by a function r(y) defined on the phase space.

Each of the pulses emitted by the source s(x) at time =0 travels through the room along
the rays S;x. On the way, they hit the walls where they are reflected, Now, in real rcoms,
pulses loose some energy when they hit a wall, that is, only a portion R<l is reflected.
Assuming the reflection coefficient R to be the same on all the walls, the energy carried by
each ray issued from point x in the phase space at time t=0, is equal to R™)(x) where n(t)
is the number of reflections undergone by the ray during its travel time t. On the way, the
rays may also cross the receiver, which happens each time r{Sx) is not zero. In other
words, the energy received by the receiver at any time, that is, the energy decay function
for any specific choice of source and receiver, 1s given by:

w(t) = jR*‘*'J{x]s(x)r{s,x} du(x) (66)
M

In a mixing room, integral (66) can be splitted according to equation (65), provided we
wait longer than the mixing time T. Thus, equation (66) becomes:

w(t) = IR““’{x}s(x]d;:{x} _jr(x}dg(x}, t>T (67)

M M

and the energy decay function becomes independent of the receiver position and
directionality, as long as it occupies the same phase volume. In other words, energy
becomes uniformly distributed in the phase space, that is, both in position and direction,
after the mixing time has elapsed. This property of mixing room is strongly reminiscent of
the diffuse field approximation of Section 1.4.2, but does not suffer of the same
inconsistency when absorption is present. Therefore, we propose to replace the traditional
definition of diffusion by mixing, which has the advantage of being a purely geometrical
property of a room, independent of wall absorption.

2.4 The distribution of reflections as key to the reve 10N Process

In the previous Section, application of mixing to the energy decay led to a definition
independent of the receiver position or directivity (equation 67). Exchanging receiver and
source roles by reversing lime, mixing leads in a similar fashion to an energy decay
function independent of source position or directivity:



w(t) = IR"*"} (x)r(x)du(x) . Is{x}dp[r) (68)
A A

Obviously, these two properties imply the independence of the energy decay from both
source and receiver positions and directivities. Therefore, source and receiver terms can be
dropped in equation (68), leading to:

w(t) = [R* (x)du(x) (69)
M

Now, mixing rooms also are ergodic. The phase space average in equation (69) is therefore
equal to a time average of R™T)(x) obtained by considering the source x as successively
taking all (phase) points located along one trajectory. Thus, the energy decay in the room
can be written:

? 17 ;
w(t) = <R > = lim —;_!-R”"{bsx]cfs (70)

here Sgx is the trajectory issued from any point x e M.

Mixing further ensures that sound energy decays need only be computed over the mixing
time: independence of events further apart than mixing time ensures an exponential decay.
For example, if t=mT, where T is the mixing time, it can be shown by recursion - using
f(x)=g(x)} =R™T)(x) in equation (65) - that:

< R & = o pAlmT) o, _ [«::R"{” :,]“ =(e~Ty"

e E—mr _e—m'

(70

where a = - (UT)In[<R™T>>]. Hence, mixing is sufficient to ensure an exponential decay,
that is, mixing is sufficient to define a reverberation time, independent of source position.

In order to evaluate the reverberation time, it is sufficient to evaluate the mean value taken
along one ray by the function f{x)= R™T)(x), where T is the mixing time. In practice, we
need only consider several time intervals equal to the mixing time and evaluate the mean
value taken by f(x) on all these intervals. Alternatively, we can evaluate the number of
reflections undergone by the ray during each time interval and evaluate the empirical
distribution for the number of reflections during the mixing time. If we consider many
intervals, this empirical distribution approximates the true probability distribution p,(T)
for the number of reflections during the mixing time T, and the mean value taken by f(x)

is given by:



<f(x)>=) () p,(T)=2 R" p(T) (72)

=0 A=l

Now, this distribution is not known, except in the case of instant mixing where it reduces
to Poisson distribution and leads to Sabine's reverberation time formula (35). In the
general case, the independence of events further apart than the mixing time must be called
upon to show that the number of reflections along one ray builds up an additive process
with independent increments (sce Polack 1992), leading to the general form for the energy
decay function:

r i[ﬂ'—l]n*]
w(t,R)= g PIRD Ec[‘"‘ (73)

with o< 0 and So, < =, and to a generalized Sabine reverberation time:

13.8
[Fr -]

However, this reverberation time has not been confronted to experiments yet, and must be
taken with a grain of salt.

RT = (749

2.5 Path fluctuations and renormalization of decay rate

Instead of evaluating the distribution of reflections, Mortessagne et al. (1992, 1993) and
Mortessagne (1994) have focus on path fluctuations, and have numerically simulated
reverberation in two-dimensional billiards, They show that Norris-Eyring's reverberation
time formula:

0.16
= —_— ?
¥ Sing]| (73)
must he renormalized into:
;o 138 "
L} 7/ 2
¢| J1-2(c5/47) nR -1 76)

% [1 +—;—(c:5'1-11f}’|1n31]



to the third order in (oSc/V), where o is linked to the standard deviation of path
fluctuations. More precisely, the total length L, of the ray after n reflections is the sum of
n successive free-path lengths ¢, +€, + ... +£, considered as correlated random variables,
Then obviously, L,, fluctuates around its average <L, > = n<£> where <__> is the mean
free-path equal to (4V/S) in any room. Then o is given by:

& =lim ., (n)/n (17

where S(n) is the standard deviation of Ln. Mortessagne et al. (1992, 1993) have
numerically checked equation (76): the experimental reverberation time plotted in Figure
15, with arbitrary units, agrees better with equation (76) - upper curve - than with Morris-
Eyring's formula (75) - lower curve,

Using the data from Mortessagne et al. (1992, 1993}, it is possible to evaluate the o of
equations (73) and (74), however only in the case where only one order k is retained. It
turns out that the reverberation time, given by equation ({74) is not very sensitive to the
order k, but that data do not fit with integer values of k: the optimal k 15 slightly greater
than 1/2 (k=0.576 and o,=0.795), and formula (76) agrees within 4% with the results
plotted in Figure 15.
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Figure 15: Decay rate renormalisation in a billiard
upper curve. equation(76);lower curve: equation(75);
+ are experimental data (from Mortessagne et al. 1993)

However, better agreement is obtained if k is fixed to 1/2, introducing a zeroth order m in
[InR] in the denominator of equation (74) (m=0.0608 and o, = 0.795): the error reduces
to 1.5%.



Mortessagne et al. (1993) have also investigated the effect of localised absorption: an
exponential decay is no longer achieved, but the decay is dominated by the trajectories
trapped between the two parallel walls of their billiard (flutter echo), as seen in Figure 16.

2.6 Non-ergodic billiards

The rectangular billiard of Figure 14 plainly is an example of non-ergodic billiards since
cach trajectory takes only 4 different directions. Similarly, a rectangular room is non-
ergodic. Since rectangular rooms are the constitutive elements of buildings, they deserve
special attention.

In a rectangular room, only ray directions remain well-defined. The position of the ray, on
the other hand, is uniformly distributed in the room. As a consequence, only a few source
and

receiver positions are necessary 10 assess the energy decay curve in the room, provided
they are as omnidirectional as possible. Nevertheless, exponential decay is never obtained,
but energy decays at a different rate for different initial directions of the rays,
independently of the source position. In fact, each decay rate defines in the phase space a
subset containing all points with smaller decay rates: it is obvious that these subsets are
included in each other, like Russian dolls. Thus, when observation times increase, the
subsets contnbuting mostly to the energy decays shrink, the instantaneous decay rates
decrease, and the instantancous reverberation times increase. The corresponding energy
decay curve is therefore curved convexly upward, as observed in Kuttruff (1973), in a way
reminiscent of Figure 16 (however obtained in a mixing billiard).

The
i wi 10 20 30
a logw
!
-2
-4
h:-:'l..
-8

-8

Figure 16: The effect of localised absorption
(from Mortessagne ef al. 1993}

It is therefore grossly erroneous to generalise results obtained with rectangular rooms. For
example, the density of arrivals derived in Section 1.2.5 for rectangular rooms cannot be



extended to other shapes: instead, the energy conservation in dynamical systems must be
called upon to evaluate this density, as was briefly mentioned in Section 2.2.

3. Conclusion: The contribution of theoretical room acoustics

This survey of theoretical room acoustics has brought us to the frontier of present
knowledge in room acoustics. We have seen how modal analysis must give way to
statistical analysis as soon as the number of modes is large, and that this statistical
analysis, though well adapted to the description of a steady state reverberation field, fails
to explain the gradual onset of reverberation. We had to look instead toward geometrical
acoustics, which in its billiard variant of Section 2 leads to mixing rooms where the sound
field gradually becomes statistical. On the other hand, rectangular room are not ergodic,
and all generalisation of results obtained in such rooms must therefore be taken with
caution.

As regards energy analysis, we have stressed the limitations of the diffuse field
approximation introduced by Sabine, and have introduced instead the concept of mixing, a
geometrical property independent of absorption. With the help of mixing, a consistent
theory of reverberation could be developed, generalizing Sabine's theory whose practical
validity is thus emphasised.

Throughout this survey, two different descriptions of reflections on the walls of a room
have been used: for modal analysis, we used the specific normal admittance; and for both
geometrical acoustics and encrgy analysis, reflection coefficients. Of course, the two
descriptions are equivalent, but both are restricted to locally reacting walls, therefore
excluding membrane absorbers, widely used in practice. On the other hand, the normal
admittance leads to different reflection coefficients for different incidence: this behaviour
can be generalized by normal admittance defined for plane waves only and depending on
the direction of incidence, as discussed by Morse & Bolt (1944). Such a behaviour greatly
complicates modal analysis, but already is included into geometrical acoustics.

In practice, this survey concludes to the superiority of geometrical acoustics as compared
lo the other approaches, provided its ergodic properties are taken into account. This
superiority is confirmed by the fact that only ray-tracing algorithms including statistical
treatments of the higher order reflections have reached a point of maturity such as they can
be used for reliable predictions in room acoustics. However, these treatments are not yet
based on billiard theory. Improvements can therefore be expected along this line,
especially with the introduction of semiclassical approximations that allows interferences
between rays.
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