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ABSTRACT
Conventional methods for signal analysis utilise the Fourier Transform to estimate the spectral
response of a signal. However this current practice suffers from poor frequency resolution when
estimating non-stationary signals. This paper presents some alternative methods based on time-
frequency distributions such as the Wigner Ville, the Choi Williams, the Bessel and the Born Jordan
from a Cohen´s class point of view. For each case, a continuous and discrete distribution is
formulated, a criterion for determining the interaction between the spectral components of the signal is
given and the simplified discretised expression for the calculation of the distribution is proposed that
can produce a reduction of at least half of the computations realised when using the original time-
frequency distribution definition. A general parallel architecture for the parallel computation of the
distribution is also proposed.

INTRODUCTION
A classic method for spectral estimation is the so-called Fourier Transform. However, its use is limited
to stationary signals giving as a result poor frequency resolution when estimating non-stationary ones.

There are other spectral estimation methods (Kay, 1988) such as the Periodogram, the autoregressive
method, the mobile average and the minimum variance spectral estimation. The performances of
these methods also depend on the use of stationary signals and some of them (such as the
autoregressive method) utilise short time-segments in order to consider the signal under study as
stationary.

Other types of spectral estimators, called time-frequency distributions, have been developed. Unlike
conventional methods these distributions are not limited to the use of stationary signals (Cohen,
1989). Despite of this important advantage, the number of calculations involved in obtaining the
spectral estimation increases substantially compared to the traditional methods. Therefore, it is
desirable to simplify the formulation of the distributions in such a way that the computations involved
can be reduced without any loss in the spectral resolution. On the other hand, there are a great variety
of time-frequency distributions. It would be very useful to develop an analysis criterion such that can
provide a tool for selecting the optimum time-frequency distribution according to the features of the
signal under consideration. This paper deals with these issues
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TIME-FREQUENCY DISTRIBUTIONS
This section formulates the so-called Cohen's class for the time-frequency distributions and it defines
some concepts related to.

The Cohen's Class
The Cohen´s class in terms of time frequency distributions (Cohen, 1989), can be formulated as
follows. Let the time-frequency distribution kernel be defined as ( )τθφ , . This kernel will define the
particular characteristics of each time-frequency distribution. Let the auto-correlation domain kernel

( )τψ ,t  be defined as the Fourier transform of ( )τθφ ,  (from θ to t , considering τ  as constant). Let the
generalised time-indexed auto-correlation function be defined as
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Then, the Cohen class for the time-frequency distributions with kernel ( )τθφ ,  can be defined as
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Auto-term, Crossing Term and Crossing Term Weighting Factor
In order to establish a comparison criterion between the different time-frequency distributions
considered in this paper, it is necessary to develop a method that may determine the degree in which
the various components of a signal interact when the time frequency distribution is calculated
(Cardoso, et al., 1996). Consider the following signal, which is composed of a finite number of
sinusoidal signals with constant amplitude 

nA , frequency 
nω  and phase 

nθ
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The n components of the signal (3) interact between them through (1). The interactions of the
components with themselves generate the so-called auto-terms of the distribution, which are always
positive and constitute the spectral contents of the signal. On the other hand, interactions between
different components generate the so-called crossing terms of the distribution, which can be positive
or negative and are added to the spectral contents of the signal. Therefore it is desirable to minimise
the crossing terms of the distributions.

Substituting equation (3) in (2) and grouping the auto-terms in the first summation and crossing terms
in the second summation, a time-frequency distribution can be expressed as
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where ( )ωTFDF  is the crossing terms weighting factor, a quantitative measure for evaluating the
different time-frequency distributions. The following sections describe the distributions according to
their definition.

The Wigner Ville Distribution
According to its definition (Cardoso, et al., 1996; Fan, and Evans, 1994; Martin, and Flandrin, 1985),
the Wigner Ville distribution for the continuous case is given by
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where t  is the time and ω is the angular frequency. For the discrete case, the distribution is given by
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where n represents the discrete time and k  the discrete frequency. Both variables are normalised.
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The Choi Williams Distribution
According to its definition (Cardoso, et al., 1996; Choi, and Williams, 1989), the Choi Williams
distribution for the continuous case is given by
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where 0>σ  is a scaling factor, t  is the time and ω is the angular frequency. For the discrete case is
given by
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where n represents the discrete time and k  the discrete frequency. Both variables are normalised.

The Bessel Distribution
According to its definition (Cardoso, et al., 1996; Guo, and Durand, 1994), the Bessel distribution for
the continuous case is given by
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where 0>α  is a scaling factor, ( )tU0

 is a second class Chebyshev polynomial, t  is the time and ω is

the angular frequency. For the discrete case is given by
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where n represents the discrete time and k  the discrete frequency. Both variables are normalised.

The Born Jordan Distribution
According to its definition (Cohen, 1989), the Born Jordan distribution for the continuous case is given
by:
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where 0>α  is a scaling factor, t  is the time and ω is the angular frequency. For the discrete case is
given by:
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where n represents the discrete time and k  the discrete frequency. Both variables are normalised.

EVALUATION OF THE TIME-FREQUENCY DISTRIBUTIONS BASED ON THE CROSSING TERMS
WEIGHTING FACTOR.
As stated previously, an ideal crossing terms weighting factor would be one that eliminates the
crossing terms. Other desirable situations outside the ideal would be that the weighting factor
concentrates the crossing terms due to two different frequency components of a signal around such
frequencies and not around other frequencies or spread them out over a wide range of frequencies.

Substituting the signal defined by (3) in (5), (7), (9) and (11) and arranging the crossing terms in the
distributions according to (4), the crossing terms weighting factors  of  each  distribution  are  obtained
and defined by the following expressions. For the Wigner Ville distribution:
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For the Choi Williams distribution:
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For the Bessel distribution:
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For the Born Jordan distribution:
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where ( )tPa

 is a rectangular symmetrical pulse of duration a . Figure 1 shows a global view of the

crossing terms weighting factors for the Wigner Ville, Choi Williams, Bessel and Born Jordan
distributions. The weighting factor is defined in terms of ω  and contains the interacting frequencies 

nω
and 

mω  defined in signal (3).  Such  frequencies  can  be  added  or  subtracted  depending  on  the

Fig. 1: Global view of the crossing terms weighting factors
for the Wigner Ville, Choi Williams ( )5=σ , Bessel

( )2=α  and Born Jordan ( )1=α  distributions.

Fig. 2: Differences of the crossing terms weighting factors
between Born Jordan-Choi Williams and Born
Jordan-Bessel distribution.

behaviour of each distribution. Consider a normalised addition, that is 1=+ mn ωω , then the graphs

relate the weighting factor against 
nω  and ω, where: 10 << nω . Given the normalised addition, for

each 
nω  value, 

mω  is given by 
nω−1 .

ANALYSIS
Figures 2 and 3 depict graphs which show the differences of the crossing terms weighting factors
between Born Jordan-Choi Williams, Born Jordan-Bessel, Bessel-Choi Williams and Wigner Ville-any
other distribution. The dark zones in the graphs correspond to points where the weighting factor of the
first distribution under comparison is greater than the second one. For the purpose of this analysis
scaling factors 5=σ , 2=α  and 1=α  are considered in the Choi Williams, Bessel and Born Jordan
distributions, respectively.

In general, it is observed that the weighting factor for the Bessel distribution is smaller than the Choi
William’s and the Born Jordan's, and that the Choi Williams's is smaller than the Born Jordan's. These
results indicate that the Bessel distribution spreads out the crossing terms better than the Choi
Williams's and Born Jordan's distributions and, in  consequence,  estimates  with  more  precision  the
spectral contents of a signal in the presence of noise. These results also indicate that the Born Jordan
distribution spreads out the crossing terms worse than the Choi Williams's and, in consequence,
estimates with less precision the spectral contents of a signal in the presence of noise. All this facts
explains the reason why the Bessel distribution is less sensitive to the presence of noise (Cardoso, et
al., 1996). But there is a direct relationship between the precision and the amount of calculation
involved in the estimation of the spectral contents of the signal.

In the case of the Wigner Ville distribution, the crossing terms are concentrated (due to the two
frequency components of the signal) on the average of such frequencies. Therefore, this distribution
estimates with better precision the spectral contents of noiseless signals with small bandwidth. The
following table shows the instantaneous frequency estimation error versus time elapsed in calculation,
both normalised, considering the doppler ultrasonic signal proposed in (Cardoso, 1996).
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0 . 8 0
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1 . 0 0
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S N R  =  2 0 d B
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Error

It is important to point out that all the distributions are affected by a scaling factor which in turn
modifies the crossing term weighting factors. As stated previously, the results have been obtained
considering 5=σ , 2=α  and 1=α  in the Choi Williams, Bessel and Born Jordan distributions,
respectively. These optimum scaling factors must be found experimentally and they depend on the
characteristics of the signal under study.

REDUCING THE COMPUTATIONAL COMPLEXITY OF THE DISCRETE DEFINITIONS
In  order  to  evaluate  the  different  distributions  for  spectral  estimation,  a  discrete  signal  ( )nx   is

Evaluation 
of the 

Analytic Signal

Evaluation of
the Instantaneous
Autocorrelation

Function

Evaluation
of the

 Fourier
Transform

Real
Signal

Time- frequency
Distribución

Segment
1

Segment
2

Segment
n

Fig. 3: Differences of the crossing terms weighting factors
between Choi Williams-Bessel and Wigner Ville-any
other distribution.

Fig. 4: General Parallel Processing scheme for the
evaluation of the time-frequency distributions.

Such a signal contains 12 −N  elements, where N  is a power of 2 and the element range is from
1+− N  to 1−N , therefore ( )0x  is the central element. Based on these elements, this section presents a

reduction in computational terms of the number of calculations involved in the evaluation of each of
the distributions considered in this paper.

The Wigner Ville Distribution
Considering (6) for estimating the Wigner Ville distribution and evaluating it in n=0 (Boashash, and
Black, 1987; Fan, and Evans, 1996), an equivalent simplified expression would be given by
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Assuming that ( ) ( )ττ −*WW  is a single factor then, for each value of k  in (6) evaluated in 0=n , there
are 36 −N  complex multiplications, 22 −N  complex additions and 1 scalar multiplication, whereas in
(17) there are 13 +N  complex multiplications, N  complex additions and 2 scalar multiplications.

The Choi Williams Distribution
Similarly, considering (8) for estimating the Choi Williams distribution and evaluating it in 0=n , an
equivalent simplified expression would be given by
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where the summation respect to µ for 0=τ  is ( ) ( )00 *xx . Assuming that 1−= NM  and that ( ) ( )ττ −*WW
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NN 48 2 −  complex multiplications, 264 2 +− NN  complex additions and 1 scalar multiplication, whereas
in (18) there are 122 2 +− NN  complex multiplications, NN 22 −  complex additions and 2 scalar
multiplications.

The Bessel Distribution
Considering (10) for estimating the Bessel distribution and evaluating it in 0=n , an equivalent
simplified expression would be given by
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where the summation respect to µ for 0=τ  is ( ) ( )00 *xx . Assuming that ( ) ( )ττ −*WW  and
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NN αα 88 2 −  complex multiplications, NNN 244 2 −− αα  complex additions and 1 scalar multiplication,
whereas in (19) there are less than 144 2 +− NN αα  complex multiplications, less than NNN −− αα 22 2

and 2 scalar multiplications.

The Born Jordan Distribution
Considering (12) for estimating the Born Jordan distribution and evaluating it in 0=n , an equivalent
simplified expression would be given by
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where the summation respect to µ when 0=τ  is ( ) ( )00 *xx . The analysis is similar to Bessel’s.

PARALLEL PROCESSING OF THE TIME-FREQUENCY DISTRIBUTIONS.
As stated previously, the use of time-frequency distributions for the spectral estimation of signals
opens the possibility of analysing signals that could be non-stationary. However, the computational
cost is high. In view of this, this paper has proposed a reduction in the amount of calculations involved
for evaluating the original definitions of each distribution, as developed in the previous section. In
addition, it is proposed the use of parallel processing techniques to further reduce the time required to
perform the evaluations. In particular, a pipeline scheme is used with three stages. The first stage
calculates the analytic signal ( )txa

 of the real signal. The second stage calculates the generalised

time-indexed auto-correlation function ( )ω,' tRx
 for 0=t  of ( )txa

. Finally, the third stage calculates the
Fourier transform of ( )ω,0'

xR , which is the time-frequency distribution ( )ω,tTFD  for 0=t  of the real

signal. Figure 4 shows the pipeline structure of the process. For the first and third stages the
calculations are relatively simple and a Fast Fourier Transform (FFT) algorithm is used. However, the
second stage requires of a more complex process, therefore this stage is further exploited using for
this purpose a parallel farm computational model in a star topology. Here, each node calculates a set
of operations of the generalised time-indexed auto-correlation function. Although the expressions for
the evaluation of each of the time-frequency distributions are different, this second stage can be
adapted easily adding or subtracting processors according to the needs. A further analysis of the
parallel implementation is a subject of a future work.

CONCLUSIONS
Conventional methods for spectral estimation are limited to the analysis of stationary signals to
produce a good estimate. However, these methods offer poor resolution when dealing with non-
stationary signals. This paper has presented some alternative methods based on the so-called time-
frequency distributions for spectral analysis. Four methods based on the Cohen's class have been
analysed, namely the Wigner Ville, the Choi Williams, the Bessel and the Born Jordan distributions. A
comparison criterion based on the crossing terms weighting factors has been proposed showing that
the Bessel distribution spreads out the crossing terms better than the Choi Williams's and Born
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Jordan's distributions and, in consequence, estimates with more precision the spectral contents of a
signal in the presence of noise, whereas the Wigner Ville distribution estimates with better precision
the spectral contents of noiseless signals with small bandwidth. This analysis has to be conducted
taking into account the optimum scaling 5=σ , 2=α  and 1=α  for the Choi Williams, Bessel and Born
Jordan distributions, respectively. This work also has proposed a simplification in complexity of the
expressions utilised for calculating the time-frequency distributions giving as a result a reduction of at
least half the operations involved in the original definition. Finally, this paper has proposed a parallel
processing scheme for the computation of the time-frequency distribution methods. Here, a pipeline
scheme with three stages is utilised, corresponding to the second stage to deal with the more
expensive computational process (evaluation of the generalised time-indexed auto-correlation
function). A generalised scheme has been described which can adapt easily its topology according to
the time-frequency distribution under consideration. Further analysis of the time performance of the
system implementation will follow shortly.
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