
Abstract 

Tibetan bowls have been traditionally used for ceremo-
nial and meditation purposes, but are also increasingly being
used in contemporary music-making. They are handcrafted
using alloys of several metals and produce different tones,
depending on the alloy composition, their shape, size and
weight. Most important is the sound producing technique
used – either impacting or rubbing, or both simultaneously –
as well as the excitation location, the hardness and friction
characteristics of the exciting stick (called puja).

In this paper, we extend to axi-symmetrical shells – sub-
jected to impact and friction-induced excitations – our modal
techniques of physical modelling, which were already used
in previous papers concerning plucked and bowed strings as
well as impacted and bowed bars. Our simulation results
highlight the existence of several motion regimes, both ste-
ady and unsteady, with either permanent or intermittent
bowl/puja contact. Furthermore, the unstable modes spin at
the angular velocity of the puja. As a consequence, for the
listener, singing bowls behave as rotating quadropoles. The
sound will always be perceived as beating phenomena, even
if using perfectly symmetrical bowls.

Introduction

Singing bowls are traditionally made in Tibet, Nepal, In-
dia, China and Japan. Although the name qing has been ap-
plied to lithophones since the Han Chinese Confucian rituals,

more recently it also designates the bowls used in Buddhist
temples. There are many distinct bowls, which produce dif-
ferent tones, depending on the alloy composition, their sha-
pe, size and weight (see three typical specimens in Figure 1).
Most important is the sound producing technique used – eit-
her impacting or rubbing, or both simultaneously – as well as
the excitation location, the hardness and friction characteris-
tics of the exciting stick (called puja, frequently made of
wood and eventually covered with a soft skin).

Quite recently, some researchers became interested in the phy-
sical modelling of singing bowls, using waveguide synthesis tech-
niques for performing numerical simulations [1-3]. Their efforts
aimed particularly at achieving real-time synthesis. Therefore, un-
derstandably, several aspects of the physics of these instruments do
not appear to be clarified in the published formulations and results.

In this paper, we extend to axi-symmetrical shells – subjec-
ted to impact and friction-induced excitations – our modal tech-
niques of physical modelling, which were already used in pre-
vious papers concerning plucked and bowed strings [4-6] as
well as impacted and bowed bars [7,8]. Our approach is based
on a modal representation of the unconstrained system – here
consisting on two orthogonal families of modes of similar (or
near-similar) frequencies and shapes. The bowl modeshapes
have radial and tangential motion components, which are pro-
ne to be excited respectively by the normal and frictional con-
tact forces between the bowl and the impact/sliding puja.

Details on the specificities of the contact and frictional
models used in our simulations are given. We produce an ex-
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tensive series of nonlinear numerical simulations, for both
impacted and rubbed bowls, showing the influence of the
contact/friction parameters on the dynamical responses.

Formulation of the dynamical system

Dynamical Formulation of the Bowl in Modal Coordinates

Perfectly axi-symmetrical structures exhibit double
vibrational modes, occurring in orthogonal pairs with
identical frequencies (ωA

n = ωB
n) [9]. However, if a slight

alteration of this symmetry is introduced, the natural fre-
quencies of these two degenerate modal families deviate
from identical values by a certain amount  ∆ωn . The use
of these modal pairs is essential for the correct dynami-
cal description of axi-symmetric bodies, under general
excitation conditions. Furthermore, shell modeshapes
present both radial and tangential components which for
geometrically perfect bowls can be formulated, at the rim
level Z, as:

where ϕAr
n (θ) corresponds to the radial component of the

A family nth modeshape, ϕAt
n (θ) to the tangential component

of the A family nth mode shape, etc. One immediate conclu-
sion can be drawn from equations (5,6): the amplitude of the
tangential modal component decreases relatively to the am-
plitude of the radial component as the mode number increa-
ses. This suggests that only the lower-order modes are prone
to engage in self-sustained motion due to tangential rubbing
excitation by the puja.

If linear dissipation is assumed, the motion of the system can
be described in terms of the bowl’s two families of modal para-
meters: modal masses mX

n , modal circular frequencies ωX
n , modal

damping ζX
n , and mode shapes ϕX

n (θ) (at the assumed excitation
level ze ≈ Z), with n=1,2,..., N , where X stands for the modal fa-
mily A or B . The order N of the modal truncation is problem-de-
pendent and should be asserted by physical reasoning, supported
by the convergence of computational results. The maximum mo-
dal frequency to be included, ωN , mostly depends on the short
time-scales induced by the contact parameters – all modes signi-
ficantly excited by impact and/or friction phenomena should be
included in the computational modal basis.

The forced response of the damped bowl can then be for-
mulated as a set of 2N ordinary second-order differential
equations:

(7)

where:

are the matrices of the modal
parameters (where X stands for A or B), for each of the two
orthogonal mode families, while
and are the vectors of the modal res-
ponses and of the generalized forces, respectively. Note that,
although equations (7) obviously pertain to a linear formula-
tion, nothing prevents us from including in ℑ X

n (t) all the nonli-
near effects which arise from the contact/friction interaction
between the bowl and the puja. Accordingly, the system modes
become coupled by such nonlinear effects.

The modal forcesℑ X
n (t) are obtained by projecting the ex-

ternal force field on the modal basis:

(8)

where Fr (θ,t) and Ft (θ,t) are the radial (impact) and tan-
gential (friction) force fields applied by the puja – e.g., a locali-
sed impact Fr (θc ,t) and/or a travelling rub, Fr,t (θc(t),t) . The ra-
dial and tangential physical motions can be then computed at
any location θ from the modal amplitudes qX

n (t) by superposition:

(9)

Revista de Acústica. Vol. 35. Nos 1 y 234

The physics of tibetan singing bowls

Figure 1 – Picture of three singing bowls and pujas:
Bowl 1 (φ=180 mm); Bowl 2 (ø=152 mm); Bowl 3 (φ=140 mm).
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(10)

and similarly concerning the velocities and accelerations.

Dynamics of the Puja and Force Field Formulation

As mentioned before, the excitation of these musical ins-
truments can be performed in two basic different ways: by im-
pact or by rubbing around the rim of the bowl with the puja
(these two types of excitation can obviously be mixed, resulting
in musically interesting effects). The dynamics of the puja will
be formulated simply in terms of a mass mP subjected to a nor-
mal (e.g. radial) force FN (t) and an imposed tangential rubbing
velocity VT (t) – which will be assumed constant in time for all
our exploratory simulations – as well as to an initial impact ve-
locity in the radial direction 0 VN (t0) . These three parameters
will be assumed controlled by the musician, and many distinct
sounds may be obtained by changing them: in particular,
VN=T0≠0 with FN=VT=0 will be “pure” impact, and FN (t)≠, VT

(t)≠ with VN (t0)=0 will be “pure” singing. The radial motion of
the puja, resulting from the external force applied and the im-
pact/friction interaction with the bowl is given by:

(11)

Contact Interaction Formulation

The radial contact force resulting from the interaction bet-
ween the puja and the bowl is simply modelled as a contact
stiffness, eventually associated with a contact damping term:

(12)

where ~yr and ~
.
yr are respectively the bowl/puja relative ra-

dial displacement and velocity, at the (fixed or travelling)
contact location θc (t), Kc and Cc are the contact stiffness and
damping coefficients, directly related to the puja material
and local geometry.

Friction Interaction Formulation

In previous papers we have shown the effectiveness of a
friction model used for the simulation of bowed strings and
bowed bars [4,7]. Such model enabled a clear distinction bet-
ween sliding and adherence states, sliding friction forces being
computed from the Coulomb mode Ft = –|Fr| µd (~

.
yt )sgn(~

.
yt ),

where ~
.
yt is the bowl/puja relative tangential velocity, and the

adherence state being modelled essentially in terms of a local
“adherence” stiffness  Ka and some damping. We were thus
able to emulate true friction sticking of the contacting surfa-
ces, whenever |Ft|<|Fr|µs, however at the expense of a longer
computational time, as smaller integration time-steps seem to
be imposed by the transitions from velocity-controlled sliding
states to displacement-controlled adherence states.

In this paper, a simpler approach is taken to model fric-
tion interaction, which allows for faster computation times,
although it lacks the capability to emulate true friction stic-
king. The friction force is here formulated as:

(13)

where µs is a “static” friction coefficient and µd (~
.
yt) is a

“dynamic” friction coefficient, which depends on the
puja/bowl relative surface velocity ~

.
yt . We will use the follo-

wing model:
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Figure 2 – Evolution of the friction coefficient with the contact relative tangential velocity (µ∞ = 0.2, µs = 0.4,C = 10): (a) For -1< ~
.
yt <1; (b)

For -0.01<~.yt <0.01
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(14)

where, 0 ≤ µ∞ ≤ µs is an asymptotic lower limit of the fric-
tion coefficient when |~

.
yt|→ ∞ , and parameter C controls the

decay rate of the friction coefficient with the relative sliding
velocity, as shown in the typical plot of Figure 2(a). This mo-
del can be fitted to the available experimental friction data
(obtained under the assumption of instantaneous velocity-de-
pendence), by adjusting the empirical constants µs , µ∞ and C
. Obviously, ε acts as a regularization parameter for the fric-
tion force law, which replaces the “zero-velocity” disconti-
nuity [13]. For the problem addressed here, we have obtained
realistic results using formulation (13), for small enough va-
lues of the regularization domain (we used ±ε ≈ 10-4 ms-1) –
results which do not seem to critically depend on ε (within
reasonable limits).

Time-Step Integration

For given external excitation and initial conditions, the pre-
vious system of equations is numerically integrated using an
adequate time-step algorithm. Explicit integration methods are

well suited for the contact/friction model developed here. In
our implementation, we used the simple Velocity-Verlet inte-
gration algorithm, which is a low-order explicit scheme [14].

Numerical simulations

The numerical simulations presented here are based on the
modal data of Bowl 2 shown in Figure 1 (with rim diameter of
152 mm, a total mass of 563 g and a fundamental frequency of
314 Hz), which were experimentally identified (see Table 1).
The puja is modeled as a simple mass of 20 g, moving at tan-
gential velocity  VT , and subjected to an external normal for-
ce  FN as well as to the bowl/puja nonlinear interaction force.

We explored a significant range of rubbing parameters:
FN = 1 ~ 9 N and  VT = 0.1 ~ 0.5 m/s, which encompass the
usual playing conditions, although calculations were made
also using impact excitation only. For clarity, the normal force
and tangential velocity were assumed time-constant, in the
present simulations. The contact model used in all rubbing si-
mulations has a contact stiffness of Kc = 106 N/m and a con-
tact dissipation of Cc = 50 Ns/m, which appear adequate for
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Table 1 – Modal frequencies and frequency ratios of the Bowl 2 (mT = 563 g, φ = 152 mm) 

Mode (j,k)1 (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (8,0) 

fn [Hz] 314 836 1519 2360 3341 4462 5696 

fn /f1 1,0 2,7 4,8 7,5 10,7 14,2 18,2

1  Notation (j,k) represents the number of complete nodal meridians extending over the top of the bowl (half the number of nodes observed along a

circumference), and the number of nodal circles, respectively [12].

Figure 3 – Displacement time histories (top) and spectrograms (bottom) of the response of Bowl 2 to impact excitation with different values
of the bowl/puja contact stiffness: (a) 10 5 N/m ; (b) 10 6 N/m ; (c) 10 7 N/m 
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the present system. However, concerning impact simulations,
contact parameters ten times higher and lower were also ex-
plored. The friction parameters used in numerical simulations
of rubbed bowls are  µS = 0.4, µD = 0.2 and C = 10. No effort,
at this stage, was made to explore other friction laws, however
the parameters used tentatively here seem realistic enough.

Seven mode pairs were used to describe the dynamics of
Bowl 2 (see Table 1 and Figure 4 in [9]). An average value of
0.005% was used for all modal damping coefficients. Assu-
ming a perfectly symmetrical bowl, simulations were perfor-
med using identical frequencies for each mode-pair (ωA

n = ωB
n ).

In order to cope with the large settling times that arise with sin-
ging bowls, 20 seconds of computed data were generated
(enough to accommodate transients for all rubbing conditions),
at a sampling frequency of 22050 Hz.

Impact Responses

Figures 3(a-c) display the simulated responses of a per-
fectly symmetrical bowl to an impact excitation (VN (t0) = 1

m/s), assuming different values for the contact model para-
meters. The time-histories of the response displacements per-
tain to the impact location. The spectrograms are based on the
corresponding velocity responses. Typically, as the contact
stiffness increases from 105 N/m to 107 N/m, higher-order
modes become increasingly excited and resonate longer. The
corresponding simulated sounds become progressively brigh-
ter, denoting the “metallic” bell-like tone which is clearly he-
ard when impacting real bowls using wood or metal pujas.

Friction-Excited Responses

Figure 4 shows the results obtained when rubbing a per-
fectly symmetrical bowl near the rim, using fairly standard
rubbing conditions: FN = 3 N and VT = 0.3 m/s. The plots
shown pertain to the following response locations: (a) the
travelling contact point between the bowl and the puja; (b) a
fixed point in the bowl’s rim. Depicted are the time-histories
and corresponding spectra of the radial (green) and tangen-
tial (red) displacement responses, as well as the spectro-
grams of the radial velocity responses.
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Figure 4 – Time-histories, spectra and spectrograms of the dynamical response of Bowl 2 to friction excitation when FN = 3 N,  VT = 0.3
m/s: (a) at the bowl/puja travelling contact point; (b) at a fixed point of the bowl’s rim
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As can be seen, an instability of the first "elastic" shell
mode (with 4 azimuthal nodes) arises, with an exponential in-
crease of the vibration amplitude until saturation by nonlinear
effects is reached (at about 7.5 s), after which the self-excited
vibratory motion of the bowl becomes steady. The response
spectra show that most of the energy lays in the first mode, the
others being marginally excited. Notice the dramatic differen-
ces between the responses at the travelling contact point and at
a fixed location. At the moving contact point, the motion am-
plitude does not fluctuate and the tangential component of the
motion is significantly higher than the radial component. On
the contrary, at a fixed location, the motion amplitude fluctua-
tes at a frequency which can be identified as being four times
the spinning frequency of the puja: Ωfluct = 4Ωpuja = 4(2VT/φ.
Furthermore, at a fixed location, the amplitude of the radial
motion component is higher than the tangential component.

The animations of the bowl and puja motions enable an in-
terpretation of these results. After synchronisation of the self-ex-
cited regime, the combined responses of the first mode-pair re-
sult in a vibratory motion according to the 4-node modeshape,
which however spins, “following” the revolving puja. Further-

more, synchronisation settles with the puja interacting near a
node of the radial component, corresponding to an anti-nodal re-
gion of the tangential component – see Equations (5,6). In re-
trospect, this appears to make sense – indeed, because of the fric-
tion excitation mechanism in singing bowls, the system modes
self-organize in such way that a high tangential motion-compo-
nent will arise at the contact point, where energy is inputted.

At any fixed location, a transducer will “see” the vibratory
response of the bowl modulated in amplitude, as the 2j alterna-
te nodal and anti-nodal regions of the “singing” modeshape re-
volve. For a listener, the rubbed bowl behaves as a spinning qua-
dropole – or, in general, a 2j-pole (depending on the self-excited
mode j) – and the radiated sound will always be perceived with
beating phenomena, even for a perfectly symmetrical bowl.

It should be noted that our results basically support the quali-
tative remarks provided by Rossing, when discussing friction-ex-
cited musical glass-instruments (see [12], pp. 185-187 – the only
reference, to our knowledge, where some attention has been paid
to these issues). However, his main point “The location of the ma-
ximum motion follows the moving finger around the glass” may
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Figure 5 – Time-histories, spectra and spectrograms of the dynamical response of Bowl 2 to friction excitation when  FN = 1 N, VT = 0.5
m/s: (a) at the bowl/puja travelling contact point; (b) at a fixed point of the bowl’s rim
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now be further clarified: the “maximum motion” following the
exciter should refer in fact to the maximum tangential motion
component (and not the radial component, as might be assumed).

Figure 5 shows a quite different behaviour, when FN = 1 N and
VT = 0.5 m/s. Here, a steady motion is never reached, as the
bowl/puja contact is disrupted whenever the vibration amplitude
reaches a certain level. At this point, severe chaotic impacting ari-
ses which breaks the mechanism of energy transfer, leading to a
sudden decrease of the motion amplitude. Then, the motion build-
up starts again until the saturation level is reached, and so on. As
can be expected, this intermittent response regime results in cu-
rious sounds, which interplay the aerial characteristics of “sin-
ging” with a distinct “ringing” response due to chaotic chattering.

Conclusions

In this paper we have presented a modelling technique
based on a modal approach which can achieve accurate time-
domain simulations of impacted and/or rubbed axi-symme-
trical structures such as the Tibetan singing bowl.

The numerical simulations presented show some light on the
sound-producing mechanisms of Tibetan singing bowls. Both
impact and friction excitations have been addressed. For suitable
friction parameters and for adequate ranges of the normal contact
force FN and tangential rubbing velocity VT of the puja, instabi-
lity of a shell mode (typically the first "elastic" mode, with 4 azi-
muthal nodes) arises, with an exponential increase of the vibra-
tion amplitude followed by saturation due to nonlinear effects.

Because of the intimate coupling between the radial and
tangential shell motions, the effective bowl/puja contact for-
ce is not constant, but oscillates. After vibratory motions set-
tle, the excitation point tends to locate near a nodal region of
the radial motion of the unstable mode, which corresponds
to an anti-nodal region of the friction-excited tangential mo-
tion. This means that unstable modes spin at the same angu-
lar velocity of the puja. As a consequence, for the listener,
sounds will always be perceived with beating phenomena.
However, for a perfectly symmetrical bowl, no beating at all
is generated at the moving excitation point.

The first motion regime offers the “purest” bowl singing.
Our results suggest that higher values of FN should enable a
better control of the produced sounds, as they lead to shorter
transients and also render the system less prone to chattering.
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