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Abstract 
The attenuation data for Stoneley wave and higher order modes in a borehole (well) and in a 

pipe is considered as an important information about porosity and permeability of the surrounding 
walls and/or possible wall defects. In the case of the porous wall the attenuation mechanism is 
associated with the fluid flow through the interface between the wall and the permeable elastic 
medium surrounding the fluid. However, there is another mechanism which leads to the attenuation of 
wave in borehole and pipes. Additional attenuation can occur due to modal scattering if the inner wall  
surface is statistically rough. In this paper the problem of the wave propagation in a circular 
waveguide with rough, elastic walls is solved using a small perturbation limit and the mean field 
approach.  

 
Resumen 
La atenuación de la onda Stoneley y los modos de orden superior en una perforación y en una 

tubería se consideran como información importante sobre la porosidad y la permeabilidad de las 
paredes circunstantes y/o posibles defectos de las paredes. En el caso de paredes porosas el mecanismo 
de atenuación se asocia con el flujo de fluido a través de la interface entre la perforación y el medio 
elástico permeable que limita al fluido. No obstante, hay otro mecanismo el cual conduce a la 
atenuación de la onda en perforaciones y tuberías. La atenuación adicional puede ocurrir debida al 
scattering modal si la superficie de la pared interna es estadísticamente rugosa. En este informe se 
resuelve el problema de la propagación de la onda en una guía de ondas circular con paredes elásticas 
y rugosas usando el límite de pequeñas perturbaciones y la aproximación del campo medio.  
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1 Introduction 
Pipelines are used widely to convey fluids and gases in petro-chemical, water and 

energy sectors. The quality of the inner pipe wall can deteriorate rapidly because of the 
chemical reactions, wall material erosion, thermal cracking and sedimentation processes. This 
leads to the increased hydrodynamic drag in the pipe, reduced hydraulic capacity and 
potential structural failures. In a majority of cases the direct visual quality inspection of pipes 
is difficult or impossible because of the operational, safety and access issues. As a result, 
there is a clear need for quick, inexpensive and accurate methods for the characterization of 
the boundary conditions in pipes. In this respect, the use of Stoneley and Lamb waves which 
can propagate long distances along the fluid-solid interface of a buried, fluid filled pipe 
appears a very attractive noninvasive boundary characterization technique. The frequency 
dependent phase velocity and attenuation (dispersion characteristics) of these modes are 
sensitive to the wall thickness and material properties and can be measured in-situ using 
remote sensors to provide a basis for the inversion problem. 

The method to estimate the attenuation coefficient which we propose in this report is 
based on the long-wave approximation which assumes that the height of roughness is 
considerably smaller then the wavelength of sound in the filling fluid and in the material of 
the pipe. The basic method has been detail in the papers [1-3], where it was used to estimate 
the attenuation of eigen-mode scattering on rough walls of empty and fluid-filled boreholes.   

2 The problem statement 
 

         The problem is as following: there is infinite fluid-
filled pipe with rough inner surface. The pipe is 
suspended in vacuum. The roughness is assumed 
cylindrically symmetrical and is given by the random 
function  (z) which defines the spatial deviation of the 
inner radius, )(1 zRr η+= , from average inner tube 
radius, 1R . The external surface of the pipe is smooth 
and has outer radius 2R . The axis of the pipe runs along 
the z axis. There is a point monochromatic source on the 
pipe axis. The problem is schematically represented in 
figure 1. The wave field in the elastic wall is described 
fully by the scalar and vector potentials. The wave field 
in the pipe is described by scalar potential only. These 
potentials satisfy the corresponding wave equations. 

The boundary conditions on the inner )(1 zRr η+=  
and outer 2Rr =  surfaces consist of: 1) equal internal 
and external forces, applied to the inner surface of the 

pipe ; 2) the equal radial shears in the fluid and in the 
elastic wall of he pipe; 3) zero forces applied to the 
external wall of the pipe. Also it is necessary to take into 
account the singularity at the point 0 r  associated with   

                                                presence of the point source. 

Figure 1. Sound propagation in a 
pipe with internally rough walls. 
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3 Theoretical approach 
The boundary conditions can be expanded using the Taylor series in the vicinity of the 

average radius of the pipe 1R  so that the matrix integral equation for the coefficients in eigen-
functions derived by formulating the standard perturbation problem can be obtained. In this 
work the solution of this equation has been obtained using the mean field approach. 
According to this approach small-order complex corrections to the otherwise real eigen-values 
can be obtained to account for the presence of wall roughness. As result it has been shown 
that the modal attenuation coefficient is the imaginary part of the small-order correction to the 
eigen-number and is given by the following expression 
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equation for the smooth pipe, W(k') is the Fourier image of the correlation function describing 
the wall roughness. 

These attenuation coefficients may be presented as a sum of partial attenuation factors 
caused by cross-scattering of eigen-modes. In the case when the pipe is suspended in vacuum, 
there is no scattering to bulk waves. In this case the attenuation factors may be written in the 
following analytical form  
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The first term in the brackets corresponds to the scattering of the i-th eigen-mode into 

other eigen modes propagating in the same direction (“forward” scattering). The second term 
corresponds to the scattering of this mode into modes propagating in the opposite direction 
(“backward” scattering). 

Apparently from equation (2) in the case of scattering of one eigen-mode into an eigen 
mode of the same type, the argument of correlation function in the first term equals zero. 
Therefore, for large correlation lengths and decreasing spectrum of correlation function only 
the first term will survive and the forward scattering will give the main contribution to the 
attenuation coefficient for such process. In this case, the attenuation factor will not depend on 
the form of the correlation function. In other cases the attenuation factor will depend on the 
correlation function spectrum. 
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Apparently from expressions (1), (2) the frequency behavior of the partial attenuation 
factor is defined by the following factors: the behavior of the scattering amplitude, )x~,x(M , 
and derivatives of the determinant x/)x(Ldet 0 ∂∂  taken along the phase curves and by the 
spectrum of the correlation function of the wall roughness. The spectrum of this correlation 
function depends on the parameter sc/aka ω= . The scattering amplitude and determinant 
depend on the parameter scRkR /11 ω= . 

According to its behavior the attenuation factor can be defined at two scales. The 
forward scattering into the same mode is defined by the partial attenuation factor related to the 
parameter scRkR /11 ω= . However, since the values of phase velocities for different modes 
become close with increasing frequency of sound, this behavior will be dominant for partial 
attenuation factors in the case of the forward scattering. Thus, it is convenient to analyze 
behavior of the partial attenuation coefficients for forward and backward scattering at 
different scales scRkR /11 ω=  and scaka /ω= . 

Besides it is convenient to normalize the attenuation factors so that in the dimensionless 
form their typical values will be of the order of unit. Taking into account that attenuation 
factors (2) are proportional to the multiplier 42

skσ  and the correlation function spectrum 
)k(W  which is, in its turn, proportional to the correlation length a, it is possible to choose a 

normalized multiplier e.g. the magnitude )1/( 42 Raσ  with dimension m-1. Such a 
normalization amplitude of the modal forward scattering is not dependent both on the form of 
the correlation function and on the correlation length. It is necessary to note that this choice is 
not universal and depends on the from form of the correlation function and on the type of 
modal scattering. 

4 Numerical results 
 

Figure 2 shows the frequency 
dependences of the phase velocity of the 
eigen modes propagating in the fluid-
filled pipe with smooth walls. This figure 
illustrates strong interaction between 
individual modes leading to the energy 
exchanges between modes which 
dispersion curves are close to each other. 
That promotes more intense migration of 
energy between modes at presence of a 
roughness. Unlike the fluid filled 
borehole case [1-3] there are two main 
eigen-modes which don’t have cutoff 
frequencies. One of them is so-called   
mode propagating in the fluid; the other 
is so-called   mode propagating mainly 

in the elastic wall. The phase velocity of 
higher-order modes decreases as the 
frequency increases from the longitudinal 
wave velocity limit at the cutoff frequency 

                                                                         of the pipe. 

Figure 2. The frequency dependence of the phase 
velocity of the eigen-modes propagating in the fluid-
filled pipe (solid line) and in the well (dashed line) 
with the same parameters
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Figure 3. The frequency dependence of the partial attenuation factors of  -mode. Forward 
scattering of eigen-modes is shown on the left plots. Backward scattering is shown on the right plots. 
Symbols   and    mark attenuation factors connected with scattering into   and   modes, respectively. 
Indices 0 and 1 correspond to the attenuation connected to scattering to the higher-order modes. 
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Figure 3 shows the frequency dependence of the partial attenuation factors caused by the 
forward and backward scattering of   mode into itself and other higher-order modes for 
different values of the ratio / 1a R . As a comparison, figure 3 also presents the partial 
attenuation coefficients for the Stoneley wave in the borehole. The following Gaussian 
roughness correlation function was used to obtain this set of results  
 

                                  4)ka(ax 222

ea)k(W,e)x(W −− π== .                           (3) 
 
The data for the partial attenuation coefficients are normalized by the factor 4

1
2 / Raσ  

and presented for a range of ratios of the roughness correlation length to the inner pipe radius 
1/ Ra . The modal attenuation due to the forward- and back-scattering is controlled by the 

roughness correlation length and by the inner pipe radius. Therefore, the frequency scales in 
these graphs are different and normalized by / sa c  and scR /1 , respectively. The results 
presented in figure 3 show that the modal attenuation due to the wall roughness is a 
combination of the forward- and back-scattering of the α -mode into itself and in other 
higher-order modes. In the case of the wall roughness with a small correlation length, i.e. 

1/ 1 <<Ra , the back-scattering is the dominant mechanism of attenuation. As the ratio 1/a R  
increases the modal attenuation due to forward-scattering becomes more pronounced and 
dominates for 1/ 1 ≅Ra .  The results also suggest that for 1.0/ 1 >Ra   the attenuation due to 
back-scattering is more pronounced in the low frequency range whereas the attenuation due to 
forward-scattering is more pronounced at the higher frequencies of sound. 
 

 

Conclusions 
In general, the effect of the wall roughness on the acoustic attenuation due to cross-

modal scattering in the pipe is greater than that in the borehole. It is interesting to note that 
there is a strong resemblance in the spectra for the modal back-scattering coefficients in the 
borehole and in the pipe. However, the spectra for the forward-scattering coefficients for these 
two cases are markedly different, particularly in the low frequency regime. The results 
presented figure 3 suggest that in the low frequency regime in the pipe the attenuation of the 
α -mode in itself and in the α -mode due to back-scattering by the wall roughness can be 
described by a quadratic function of the frequency. A similar behavior is observed in the case 
of the Stoneley wave in the borehole. The behavior of the attenuation due to the forward-
scattering of these modes shown in figure 3 is considerable different in the case of the pipe 
and borehole. The behavior of the forward-scattering attenuation of the α -mode is also 
quadratic and by several orders of magnitude exceeds the analogous attenuation of the 
Stoneley wave in the borehole. 

 
The results obtained in this work can be used to develop a method for the invasive 

inspection of the wall quality in pipes and boreholes from attenuation data. The predicted 
modal frequency-dependent attenuation behavior is linked strongly to the statistical 
parameters of the wall roughness can be used to determine the roughness mean height and 
dominant correlation length. 
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