
 
 
VI Congreso Iberoamericano de Acústica - FIA 2008 
Buenos Aires, 5, 6 y 7 de noviembre de 2008 
 

 
FIA2008-A119 

 

An algorithm for detection and isolation of faulty vibration 
modes based on a spectral decomposition of the plant time 

response 
 

José Maria Galvez 
 
Department of Mechanical Engineering, Federal University of Minas Gerais, Brazil. Av. 

Antonio Carlos 6627, Pampulha, 31.270-901 Belo Horizonte, MG, Brazil. E-mail: jmgalvez@ufmg.br 
 

 
 
Abstract 
This work presents an algorithm for detection and isolation of faulty vibration modes based on 

the spectral decomposition of the plant time response. A Hankel matrix is built from plant output 
measurements and its singular values are used to detect and identify plant parameters related to faulty 
vibration modes. It is shown that the detection (alarm generation) and isolation (alarm interpretation) 
tasks are easily performed based on the proposed algorithm. Examples are finally presented to 
illustrate the performance and application of the proposed algorithm. 

 
Resumen 
Este trabajo presenta un algoritmo para la detección y aislamiento de modos de vibración 

defectuosos, el algoritmo es basado en la descomposición espectral de la respuesta de tiempo de la 
planta. Una matriz de Hankel se construye a partir de mediciones de la salida de la planta. Los valores 
singulares de esta matriz se usan para detectar e identificar los parámetros de la planta relacionados 
con los modos de vibración defectuosos. Se muestra como la detección (generación de la alarma) y el 
aislamiento (interpretación de la alarma) de la falla son tareas fácilmente realizadas con el algoritmo 
propuesto. Finalmente, se presentan ejemplos que ilustran el desempeño y aplicación del algoritmo 
propuesto. 
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1 Introduction 
The development of safer and more reliable control systems has been an increasingly 

need in the last decades.  To full-fill the modern standards, the control systems design must 
include fault detection and isolation issues at their very early design stage, Delmaire, Cassar 
and Staroswiecki (1995), Iserman (1984). The ultimate goal of these systems is to reach a 
fault-tolerant control (FTC) environment. 

 Fault detection and isolation (FDI) schemes are implemented as real-time algorithms 
whose inputs are plant output observations. They are used for a) fault detection: to decide 
whether the plant is in a normal operating condition or in a faulty one and b) fault isolation: to 
point out and identify the kind of the fault (if present) among a given fault set. Following the 
FDI diagnosis, on-line procedures are usually needed for FTC purpose, while off-line 
procedures could be used for maintenance purpose. 

 During the last decades, the international scientific community has presented several 
fine works, Iserman (1984), Yu and Shields (1995). Two main streams can be identified, 
control related techniques and artificial intelligence based methods. System theory, signal 
processing or artificial intelligence approaches have been extensively used according to the 
available data format. Most of the model-based and non-model-based techniques have been 
developed based on the comparison of the data produced by the real-time plant operation with 
some previously obtained knowledge of the system.  

This paper presents a novel FDI algorithm based on the singular value decomposition of 
a Hankel matrix built from plant output measurements. The main feature of the proposed 
algorithm is that it does not rely on plant models. All it is required is a plant signature that can 
be experimentally obtained. The paper is organized as follows: Section 2 includes some 
comments on the FDI problem; Section 3 presents the basic formulation of the Eigensystem 
Realization Algorithm (ERA); Section 4 introduces the singular values based fault detection 
and isolation (SVFDI) algorithm; Section 5 explores the SVFDI algorithm features through 
experimental results; and finally, Section 6 presents final comments and conclusions. 

2 Some comments on the FDI problem 
FDI algorithms use the plant input-output measurements to implement a two-steps 

procedure: the fault detection and the isolation tasks. The first step is the fault detection step 
or alarm generation. The problem of the alarm generation is to decide whether the system is in 
a normal operating condition or not. The set of output measurements along with a previously 
obtained knowledge of the system constitute the algorithm inputs while a set of generated 
alarms are the algorithm outputs. The second step consists on the alarms interpretation. The 
main issue in this case is to correctly decide which faults are present (fault isolation) chosen 
from a pre-defined fault set.  It is also of one’s interest to establish their characteristics such as 
occurrence time, fault size, class, consequences, etc. The input is the set of alarms and the 
output is the faults isolation, characterization and diagnosis. In the case of FTC, further 
analysis is usually required to determine whether the system is still capable to perform 
properly after the failure. The algorithm performance is an important issue that must always 
be considered. The decisions taken at every step of the FDI problem solution might include 
and accumulate evaluation errors. The measured variables may include noise and load 
perturbations that might obscure system failures. Also the knowledge one has about the 
system normal operation might include uncertainties. Detection errors and false alarms can be 
confirmed by their probability of occurrence. Incomplete isolation and false isolation errors 
can be evaluated by comparison based on the faulty events probability of occurrence.  
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3 The basics of the Era Algorithm 
This section presents the basic formulation of the Eigensystem Realization Algorithm 

(ERA), as originally proposed by Juang and Pappa in 1985. Since then, the scientific 
community has proposed several modifications and improvements. The ERA algorithm is a 
very reliable computational procedure originally proposed for modeling of dynamic systems. 
For the sake of simplicity and without lost in the argument, this work focuses on the original 
algorithm. In the following, all posterior algorithm improvements, less important derivation 
steps and several results have been omitted. Consider a state space realization for a linear 
time-invariant discrete-time dynamic system given by 
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where, [A, B, C] defines a discrete-time state space realization, x is a n-dimensional state 
vector, u an m-dimensional control input, y a p-dimensional measurement vector and v 
represents measurement noise. The system impulse response sequence is given by 
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A Hankel matrix can be constructed from the impulse response sequence as 
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where C  and B  are the observability and controlability matrices, respectively. Also, it 

should be noted that, usually, H(0) is not square and that ( ) nmnpHdim Χ=)0(  and 
. From the singular value decomposition (SVD) ( ) nHrank ≤)0(
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then 
BCTQDPH ==)0(                                                  (7) 
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It is known that, there exist matrices Ep and Em such that 
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finally, a minimal order realization can be found as 

 
[ ] [ ] [ ]2/12/12/12/1 &;)1( PDECEQDBQDHPDA TpmTT === −−              (12) 

 
Besides that, Juang and Pappa have also proposed two quantitative criteria to eliminate 

modal frequencies created by measurement noise, Juang and Pappa (1986). 

4 The singular values based fault detection and isolation algorithm 
The proposed SVFDI algorithm can be seen as a generalization of the ERA algorithm 

(originally applied for model identification). It will be shown later that in the case of the 
SVFDI problem there is no need for a plant model, all one needs is the singular values of the 
Hankel matrix built from the plant time response, as shown in the previous section. 

In the following and for the purposes of the SVFDI algorithm we shall call an 
observable plant parameter if any drift from its nominal value can be detected from output 
measurements. Also, it is assumed that in a close neighborhood of its nominal value a 
parameter drift will “friendly” affect the singular values of the Hankel matrix.  Finally, it is 
also clear that observability and controllability properties of the plant (as their standard 
definitions) also play important roles in the performance of the SVFDI algorithm. In this 
context, the set of singular values can be considered a natural choice for detecting parametric 
drifts and failures. The singular values set can be interpreted as an image of the plant 
parameters. Assuming this fact, it can be established a relationship between the singular 
values and the plant parameters using standard correlation analysis and use these singular 
values as flags to indicate any parameter drift from its nominal value. The choice of singular 
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values as a measure to detect parametric drift is due to the fact that its nature (real positive 
numbers) does not change as natural frequencies and eigenvalues do when plant parameters 
change. Under “normal” operational conditions any change of plant parameters values would 
affect the system dynamics and in a final analysis the singular values of the Hankel matrix. 

In a statistic framework, correlation does not imply causality meaning that correlation 
cannot be validly used to infer a causal relationship between variables. Consequently, 
correlation between variables is a necessary but not a sufficient condition to establish a causal 
relationship. However, having established causality, and in a close-enough neighborhood of 
the nominal plant, correlation can be taken as the natural choice for analysis. The correlation 
analysis will deliver a mapping of the plant parameters drifts into the singular values set of the 
Hankel matrix built from the plant time response. The proposed procedure for fault detection 
and isolation is depicted in the following section through examples. To illustrate the features 
of the proposed technique, two lumped parameter models have been chosen as shown next. 

5 Experimental results 
Example I - Let us consider the spring-mass-dashpot system shown in Figure 1. 
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T is the kinetic energy,  
V is the potential energy and  

R is the Raleigh dissipation function. 
 

Parameter Value 
m1 = 1 
m2 = 1 
m3 = 1 
d1 = 0.0600 
d2 = 0.0200 
d3 = 0.0020 
k1 = 16 
k2 = 6.0 
k3 = 0.4 

 
               

Figure 1. The Spring-Mass-Dashpot System for Example I. 
 
Then, the differential equations of motions are given by 
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in matrix form, with u1 = u2 = u3 = u, one has 

5 

http://en.wikipedia.org/wiki/Correlation_does_not_imply_causation


VI Congreso Iberoamericano de Acústica - FIA 2008 FIA2008-A119 

 
















=
















=
















=
















=

=++

1
1
1

&
00

00
00

;
00

00
00

;
00

00
00

with

3

2

1

3

2

1

3

2

1
F

k
k

k
K

d
d

d
D

m
m

m
M

uFqKqDqM &&&

 

 
then, a state space representations can be written as 

[ ] [ ] [ ]

[ ]0&
0

;
0

with;;

111 IC
FM

B
DMKM

I
A

q
q

xxCyuBxAx

=







=








−−

=









==+=

−−−

&
&

 

then 









=
















=

























+

























−−
−−

−−
=

q
q

xwithxy

uxx

&

&

000100
000010
000001

1
1
1
0
0
0

0020.0004000.000
00200.0000000.60
000600.0000000.16
100000
010000
001000

 

 
Example II – Let us consider the system presented in Figure 2. 
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T is the kinetic energy,  
V is the potential energy and  

R is the Raleigh dissipation function. 
 

Parameter Value 
m1 = 1 
m2 = 1 
m3 = 1 
d1 = 0.0600 
d2 = 0.0200 
d3 = 0.0020 
k1 = 16 
k2 = 6.0 
k3 = 0.4  

Figure 2. The Spring-Mass-Dashpot System for Example II. 
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In this case, the differential equations of motions are given by 

 

33323332333

23323212332321222

1221212212111
)()(

)()(

uqkqkqdqdqm
uqkqkkqkqdqddqdqm

uqkqkkqdqddqm

=+−+−
=−++−−++−

=−++−++

&&&&

&&&&&

&&&&

 

 
in matrix form, with u1 = u2 = u3 = u , one has 
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and with M , F , C and x defined as in the previous example, then 
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It should be notice that in both examples the plant observability matrix is ill conditioned 

as shown in Table 1. Despite of that the proposed technique still delivers good results. Table 2 
presents the systems eigenvalues and the nominal singular values of the plants. 

 
Table 1. Conditioning Numbers for Examples I and II. 

Uncoupled System 
Observability Matrix Conditioning Number 

Coupled System 
Observability Matrix Conditioning Number 

2320.249=γ  7896.454=γ  
 

Table 2. System Eigenvalues and Singular Values for Examples I and II. 
Uncoupled System 

Eigenvalues 
Coupled System 

Eigenvalues 
Uncoupled System 

Singular Values  
Coupled System  
Singular Values 

0.6325j0.0010-
.63250j0.0010-

2.4495j0.0100-
2.4495j0.0100-
.99993j0.0300-

3.9999j-0.0300

−
+
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+

 

0.8715j0.0019-
0.8715j0.0019-
2.0974j0.0080-
.09742j0.0080-
.90304j0.0431-
9030.4j-0.0431

−
+
−
+
−
+

 

0.0000
0.0000
0.0000
0.1352

.711151

.465956

 

6.9848
10.6838
24.1515
24.5874
39.5797
46.4186
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Figures 3 through 5 present several dynamic results of the plants used in the Examples I 
and II. They are placed side by side for comparison purposes. 

The Hankel matrix in both cases was built from the impulse responses results shown in 
Figures 3a and 3b, respectively. 
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Figure 3a. Impulse Responses for Example I. 
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Figure 3b. Impulse Responses for Example II. 
 

Figures 4a and 4b present the frequency responses for Examples I and II, respectively. 
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Figure 4a. Frequency Responses for Example I. 
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Figure 4b. Frequency Responses for Example II. 
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Figures 5a and 5b present the power spectrum densities for Examples I and II, 
respectively. 
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Figure 5a. Spectrum Densities for Example I. 
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Figure 5b. Spectrum Densities for Example II. 

 
Using standard regression analysis techniques, the correlation coefficients between plant 

parameters and the singular values of the Hankel matrix were calculated and normalized such 
that it has been assigned the value of “1” to the greatest coefficient and “0” to the smallest. 
The results are depicted on Table 3. A “one” would mean strong correlation and a “zeros” a 
weak or inexistent correlation. 

Table 3 can be used to select the best singular values to be used as “flags” based on their 
correlation with plant parameters. From Table 3 one can built Table 4 that presents the 
structural sensitivity of the singular values with respect to parameter drifts. 

 
Table 3. Correlation Coefficients for Examples I and II. 

Correlation Coefficients for the Uncoupled System 
 SV1 SV2 SV3 SV4 SV5 SV6 

m1 0.901 1 0.353 0.082 0 0.077 
d1 1 1 1 0.714 0 0.378 
k1 0.964 1 0 0.341 0.506 0.592 
       

m2 0.657 0.657 0.657 0.738 0 1 
d2 1 1 1 0.655 0 0.204 
k2 0.029 0.029 0.029 1 0 0.782 
       

m3 0.200 0.200 0.200 0 1 0.478 
d3 1 1 1 0 0.516 0.484 
k3 0.102 0.102 0.1 2 0 0.960 1 0  

Correlation Coefficients for the Coupled System 
 SV1 SV2 SV3 SV4 SV5 SV6 

m1 0.157 0 0.493 0.424 1 0.905 
d1 0.723 1 0.730 0.624 0 0.298 
k1 1 0.838 0 0.792 0.931 0.610 
       

m2 1 0.994 0.414 0.361 0 0.391 
d2 0.841 0.975 0.604 0.485 0 1 
k2 0 0.594 0.993 1 0.644 0.199 
       

m3 0.691 0.710 1 0.405 0 0.864 
d3 0.479 0.647 0.999 1 0.409 0 
k3 0.998 1 0 0.998 0.976 0.954  
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Table 4. Structural Sensitivity Coefficients for Examples I and II. 
Structural Sensitivity Coefficients for the Uncoupled System 

 SV1 SV2 SV3 SV4 SV5 SV6 
m1  1     
d1 1 1 1    
k1 1 1     
       

m2      1 
d2 1 1 1    
k2    1   
       

m3     1  
d3 1 1 1    
k3    1 1   

Structural Sensitivity Coefficients for the Coupled System 
 SV1 SV2 SV3 SV4 SV5 SV6 

m1     1  
d1  1     
k1 1      
       

m2 1 1     
d2  1    1 
k2   1 1   
       

m3   1    
d3   1 1   
k3 1 1  1 1 1  

6 Final comments and conclusions 
This paper presented a fault detection and isolation algorithm based on plant output 

measurements. In a close neighborhood of the nominal plant values regression analysis has 
shown to be the proper choice to link the Hankel matrix singular values with plant parameters. 
An important feature of the SVFDI algorithm is that its formulation does not require a plant 
model. Having obtained a nominal plant image through the singular values of the Hankel 
matrix; this image can be used to determine, by comparison, any value drift of the plant 
parameters. Two functional levels of SVFDI procedure can be distinguished, namely alarm 
generation and alarm interpretation. At the alarm generation level (detection) the SVFDI 
algorithm naturally displays plant failure through the change of the singular values structure 
and values. At the alarm interpretation level (isolation) the SVFDI algorithm delivers an 
image of the plant parameters through the singular values allowing the identification of the 
faulty parameter.  Finally, the proposed SVFDI algorithm was applied to ill conditioning 
plants showing outstanding performance in solving both, detection and isolation problems.  
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