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Abstract 
A T-matrix technique has been used to study acoustic scattering from extended axisymmetric 

objects. The objects are formed using the mathematical function for a “superellipse” [i.e, (x/a)s + (z/b)s 

= 1, where s=2n, n=1,2,3,…], and revolving around the z-axis. For s=2, the object is a spheroid with 
aspect reason α=b/a. As s increases, the shape of the object approaches a cylinder of radius a and 
length 2b. The method allows the scattered field to be determined for all azimuth angles as a function 
of frequency, and allows comparisons to be made with other methods for describing the scattering of 
objects of this type. The results have direct applications in the interpretation of acoustic scattering 
from oceanic objects such as the swim bladders of some fish, and zooplankton.  

 
Resumen 
Una técnica de la extensión de la matriz-T se ha utilizado para estudiar la dispersión acústica de 

objetos axisimétricos alargados. Los objetos son formados a partir de la función matemática de una 
“super” elipse “ [i.e, (x/a)s + (z/b)s = 1, donde s=2n, n=1,2,3,…], y girando alrededor del eje z. Para 
s=2, el objeto es un esferoide alargado con razón de aspecto α=b/a. A medida que s aumenta, el objeto 
se aproxima más a un cilindro con radio a y longitud 2b. El método permite determinar la distribución 
del campo dispersado para todos los ángulos azimutales como una función de la frecuencia, y permite 
hacer comparaciones con otros métodos aproximados para describir la dispersión de objetos de este 
tipo. Los resultados tienen aplicaciones directas en la interpretación de la dispersión acústica de 
objetos oceánicos tales como las producidas en las vejigas natatorias de algunos peces y en el 
zooplancton.  
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1 Introduction 
Air bubbles in water have remarkable acoustical properties. The great difference 

between the acoustic impedances of air and water causes them to be highly effective scatterers 
of sound, especially when insonified at the primary (monopole) resonance frequency, where 
the bubble surface moves in and out without change in shape). In this case, the scattering 
cross-section may be many times larger than the physical bubble size. A classical introduction 
to the phenomena of bubbles is given in “Physics of Sound in the Sea” (1969).  

The acoustic response of a spherical bubble was first treated by Minnaert (1933), using 
an equation of motion method he was able to predict the monopole resonance frequency as 

 

 ka =
1
c

3γP
ρ

, (1) 

  
where: k = 2π /λ  is the wave number at the resonance frequency; a  is the bubble radius; γ  is 
the ratio of gas specific heats; and P , ρ , and c , are the ambient pressure, density, and sound 
speed, respectively, of the surrounding water. For an air bubble at atmospheric pressure in 
water (c ≈1500 m/s) the value of ka ≈0.0136. This means that the wavelength of sound at the 
monopole resonance frequency of the bubble is about 460 times its radius.  

An alternative method of studying the acoustic resonances of a bubble is to examine 
sound scattering from its surface. In Anderson's (1950) fluid sphere theory, a bubble is 
characterized as a spherical void filled with air placed within the larger mass of water. This 
method predicts a monopole resonance frequency identical to that obtained by Minnaert. 

An important research area for both bubbles and fish swimbladders (which behave very 
similarly to air bubbles) is their resonance behaviour in nonspherical cases. This was studied 
initially by Strasberg (1953) and Weston (1967), who examined the variation in the monopole 
resonance frequency for both oblate and prolate spheroidal cases, and found approximate 
values for the variable scattering cross-section, and Q. Ye (1998) also  described sound 
scattering by a prolate spheroidal bubble, using an approach based on the Kirchhoff integral 
theorem, and an analogy between resonant scattering and electrostatic field phenomena.  

In previous work (Feuillade and Werby, 1994), scattering from deformed bubbles was 
studied, using the extended boundary condition (EBC) method of Waterman (1969), 
(sometimes called the “T”-matrix method). In the spherical limit this is equivalent to 
Anderson's theory. Prolate spheroids, and cylinders with hemispherical endcaps, were 
considered. Variations in the resonance frequency, scattering amplitude, and Q, were studied; 
and the azimuthal scattering distribution. 

Another approach to the swimbladder scattering problem has centered on the 
application of finite length fluid-filled cylinder and bent cylinder approximations (Stanton, 
1988, 1989) for modeling the bladder. 

In this present work, the EBC method is extended to consider low frequency scattering 
from air-filled objects in water, modelled as prolate “superspheroids.” A superspheroid  is a 
three-dimensional surface described in cartesian coordinates by the “superellipse” equation   

 

 ( x
a)s

+ ( z
b)s

=1   (s = 2n,  n =1, 2, ...) , (2) 
  

which is revolved around the z axis to produce an axially symmetric object described by 
(x /a)s

+ (y /a)s
+ (z /b)s

=1 . Here, a is the semi-minor axis in the x and y directions, and 
b is the semi-minor axis in the z direction. The surface has aspect ratio α = b /a . If α >1, it is 
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prolate, and if α <1, it is oblate. The exponent s describes the order of the superspheroid. If 
s=2, it is a regular spheroid; while, if s>2, the surface changes such that, as s increases, the 
shape approaches that of a right circular cylinder of length 2b, and radius a, with its axis in 
the z direction. 

The purpose of the present work is to study the primary resonance scattering frequency, 
and distribution, of highly deformed bubbles for large values of s, since this method offers 
the capability of describing these phenomena for objects which closely approximate an exact 
right circular cylinder. Swimbladders are irregularly shaped objects, and typically only 
roughly resemble  prolate spheroids, cylinders with hemispherical endcaps, or right circular 
cylinders. However, the presence of rough irregularities on the surface of the swimbladder is 
frequently assumed to cause only minor, and generally negligible, perturbations to the 
resonance frequency and scattering distribution of the swimbladder, which is dominated 
overall by the monopole resonance, and can be modelled using prolate spheroidal or 
cylindrical models. The work presented here makes a contribution to this topic, by examining 
the variation of these phenomena as the shape of the objects are successively deformed from a 
prolate spheroidal shape into a right circular cylinder of the same volume, which thereby 
introduces a sharp irregularity onto the contour of the surface. The results show that the 
assumption that the effect of surface irregularities is generally negligible appears to be well 
justified, and that the monopole resonance, which leads to a spherically symmetric scattering 
distribution, continues to dominate low frequency scattering even for cylindrically shaped, 
air-filled, objects with aspect ratios as high as α = 40.  

2 Theory 

2.1 The EBC method  
A complete development of the EBC method will not be presented here. For the 

derivation of the EBC theorem, the reader is referred to Waterman’s  original paper. A brief 
summary of the T-matrix expansion for a superspheroidal scatterer is given here. 

In order to expand the T-matrix, the various components of the acoustic field (the 
incident, scattered, and internal, components) must be expanded in terms of a set of basis 
functions which are partial wave solutions of the Helmholtz equation, i.e., 

 

 {∇2 + k2} φ(r) = 0  , (3) 
  

with the center of the coordinate system placed inside the scatterer S. These solutions, which, 
for the scattering geometries considered here, are typically products of spherical Bessel (or 
spherical Hankel)  functions with spherical harmonics, are denoted as {ψn (r); n = 0,1,2, ...}, 
where various indices have been condensed into n for simplicity, and r is the field expansion 
point. The incident wave must have no singularities at the origin, so it is expanded using the 
regular wavefunctions {Reψn (r)} (involving products with spherical Bessel functions), i.e., 

 

 φo(r) = an
n
∑ Reψn (r)  . (4) 

 
The incident field is assumed to have no singularities inside the scattering surface S, so when 
r is inside S, and r =| r |< rmin, where rmin is the radius of the sphere which inscribes S, the 
incident field is given by Eq. (4).  
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The scattered wave φs(r) is given for all r =| r |> rmax , i.e., for r outside a sphere of radius 
rmax  which circumscribes S. Therefore 

 

 φs(r) = fn
n

∑ ψn (r)  . (5) 

 
The reason is that all the sources giving rise to φs must lie completely inside the sphere on 
which the ψn  (products with Hankel functions) are evaluated. 

The field inside S is 
 

 φt
−(r) = αn

n
∑ Reψ 'n (r) , (6) 

 
where “-” means “inside”, and the prime indicates acoustical conditions inside the scatterer. 

 There are two boundary equations which must be applied at the surface S. First, the 
continuity of pressure gives 

 

 φt
+(r') =

ρ'
ρ

 αn
n

∑ Reψ 'n (r ') , (7) 

 
where ρ'  indicates the density of the inner acoustic medium, and r' is a point on S. Second, 
the continuity of the normal component of particle velocity gives 

 

 ∇+φt (r').n = αn
e

n
∑ ∇−Reψ'n (r').n  , (8) 

 
where n is the normal to the surface.  

Application of these relations to the EBC theorem leads to the following expression for 
the expansion coefficients appearing in Eq. (4) for the incident field, i.e., 

 

 

am = ik {ψm (r')
S∫∫ αn

n
∑ ∇−Reψ 'n (r')

                      −
ρ'
ρ

 αn
n
∑ Reψ'n (r') ∇ψm(r')}.n dS

   . (9) 

  
This is an integral which must be performed over the surface area of the scatterer. Equation 
(9) represents a set of equations which can be written as a matrix equation 

 
 
 a = −iQα    , (10) 
  

where  
 

 Qmn = k {
S∫∫ ρ'

ρ
 Reψ'n (r') ∇ψm(r') −ψm (r') ∇−Reψ 'n (r')}.n dS    . (11) 
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Similar expressions are obtained for the expansion coefficients appearing in Eq. (5) for 
the incident field, i.e.,  

 

 

fm = −ik {Reψm (r')
S∫∫ αn

n
∑ ∇−Reψ 'n (r')

                      −
ρ'
ρ

 αn
n
∑ Reψ'n (r') ∇Reψm (r')}.n dS

   . (12) 

 
This leads to another set of equations which can be represented by 

 
 f = iReQα    , (13) 
 

where 
 

 
ReQmn = k {

S∫∫ ρ'
ρ

 Reψ'n (r') ∇Reψm(r')

                                             
− Reψm (r') ∇−Reψ 'm (r')}.n dS

   . (14) 

  
From Eq. (10) we have α = iQ−1a , and substituting for α  in Eq. (13) yields 
 

 f = −ReQQ−1a = Ta       ⇒        T ≡ −ReQQ−1   , (15) 
 

which is the general expression for the T-matrix T. 

2.2 Integration over the superspheroidal surface 
For a superspheroid defined by: (x /a)s

+ (y /a)s
+ (z /b)s

=1 , the expression for the 
vector normal to the surface, after transformation to spherical coordinates and manipulation, 
may be shown to be 
 

 ˆ n (r,θ,φ) =
ˆ r  (bs sins θ + as coss θ) + ˆ θ  (bs sins−2 θ − as coss−2 θ)sinθ cosθ

(b2s sin2s−2 θ + a2s cos2s−2 θ)1/2    , (16) 

 

which, we note, has no ˆ φ  dependence. This, when combined with the standard expression for 
∇ in spherical coordinates, yields 
 

ˆ n (r,θ,φ).∇ψ =
(bs sins θ + as coss θ) ∂ψ

∂r
+ (bs sins−2 θ − as coss−2 θ)sinθ cosθ 1

r
∂ψ
∂θ

(b2s sin2s−2 θ + a2s cos2s−2 θ)1/2 . (17) 

 
This indicates that, to determine the T-matrix elements for a superspheroidal scatterer, it is 
necessary to evaluate integrals of type I = G(r,θ) ∫ dS  on the surface, where dS is 
 

 dS =
a2b2(b2s sin2s−2 θ + a2s cos2s−2 θ)1/2

(bs sins θ + as coss θ)(s+2) / s  sinθ dθ dφ   , (18) 

 

and r = b [(b /a)s sins θ + coss θ]−(1/ s) . 
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As an example, to show what these integrals typically look like, we have 
 

Qn1m;n2m = k {
S∫∫ ρ'

ρ
 jn2

(k'r)Yn2m[C1kh'n1
(kr)Yn1m +(C2/r)hn1

(kr)(∂Yn1m/∂θ)]

                            − hn1
(kr)Yn1m[C1k ' j'n2

(k 'r)Yn2m +(C2/r) jn2
(k'r)(∂Yn2m/∂θ)]} dS

,       (19) 

 
which incorporates partial wave functions of the types ψnm (kr) = hn (kr)Ynm(θ,φ), and 
Reψnm (k 'r) = jn (k'r)Ynm (θ,φ)  (where k'  is the wavenumber inside the scatterer), and it is 
understood that h'n (kr) ≡ ∂hn (kr) /∂(kr), etc. The elements of ReQn1m;n2m  can be obtained in 
a corresponding manner, with hn → jn and h'n → j'n . For a superspheroidal geometry, the 
structure of Q (and also ReQ) will be diagonal in m , but not generally diagonal in n. 

3 Results 
In the results below, we use the following equation to obtain the scattered acoustic wave 

field response in terms of standard angular distributions, and the elements of the T-matrix 
 

 F∞(k,θ,φ) =
2
ka | fnmYnm (θ,φ)

n,m
∑ |  , (20) 

 
where  F∞ denotes a “form function,” and a is radius of the spherical bubble of equivalent 
volume to the superspheroid. 

One of the important features of Eq. (15) to find the fnm , and therefore the scattered 
field, is that T is a function only of the boundary conditions and the shape of the object. 
Consequently, once T is known, the scattered field can be determined from any chosen 
incident field. However, a straightforward evaluation of Eq. (15) is frequently problematical. 
The reason is that Q is typically very large, and often ill-conditioned, so that finding Q−1 is 
difficult. Various computational strategies have been adopted to deal with this issue. In this 
present work, the computational scheme was implemented using MATLAB. In addition, use 
was made of a freely downloadable software package “mptoolbox_1.1” (Barrowes, 2007) 
which enables numerical computations to be performed to arbitrary degrees of precision. For 
the work here, this toolbox was implimented with 250 bits of precision specified for the 
mantissa part of the number, which leads to computations with about 75 decimal places of 
accuracy. This is easily enough to determine Q−1 for all the cases considered here. 

In the calculations here, the density and sound speed of water are taken as ρ =1000 
Kg/m3 and c =1500 m/s, respectively. The density and sound speed of air are ρ'=1.26 Kg/m3 
and c'= 331.5 m/s, respectively.  
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3.1 The shape of superspheroids 

 
 
Figure 1. Change of shape of superspheroids. (a) α=1. (b) α=10. In both 
cases: s = 2 (solid line); s = 8 (dashed line); s = 32 (dot-dash line). The heavy 
horizontal lines show the axis around which the curve must be rotated to 
form a 3-D object. (Curves vertically separated for α=10, for clarity). 

 
Figure 1 shows the effect of increasing the superspheroid order on the shape of 

scattering object. When s=32, the shape approximates closely to a right circular cylinder.  

3.2 The effect of increasing aspect ratio 
 

 
Figure 2. Change of form function with aspect ratio. (a) α=1. (b) α=5. (c) 
α=10. (d) α=20. (e) α=40. In all cases s = 2. 
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Figure 2 shows the effect of varying the aspect ratio α  on the primary low frequency 
resonance of superspheroids of order s = 2 (i.e., they are pure prolate spheroids). The form 
function is plotted as a function of frequency represented by ka. In all cases, the scatterers 
were insonified from broadside (θ = 90°). Based on the form function, three effects may be 
observed: (1) the resonance frequency kaα  increases; (2) the maximum peak height Pmax 
decreases; (3) the quality-factor Qf of the resonance (determined by dividing kaα  by the 3-dB 
width of the response) decreases. These effects are summarised in Table 1. 

 
Table 1. Effect of changing aspect ratio on resonance properties 

 
Aspect ratio α  kaα  kaα  / ka1 Pmax Qf 
1 0.01359 1 147.09 75 
5 0.01520 1.1185 130.91 50 
10 0.01686 1.2406 118.70 37 

20 0.01902 1.3996 114.81 27 
40 0.02190 1.6115 91.56 18 

 
The values of Qf presented here tend to vary with the specific sampling interval used to 

calculate the curves and, consequently, can only claim an accuracy of about ±1 in the last 
integer before the decimal point. The ratio kaα  / ka1 closely matches the values predicted by 
Weston’s formula for the resonance frequency of a prolate spheroid.5 
 

 fe
f1

= 2 e−1/3 (1− e2)1/4  {loge[1+(1− e2)1/2

1- (1− e2)1/2 ]}−1/2    , (21) 

 

where  e = α-1. 

3.3 The effect of increasing superspheroid order, and azimuthal 
variations 

 
Figure 3 shows the effect of increasing the superspheroid order on the characteristics of 

the resonance. As when the aspect ratio was varied, increasing s has three effects: (1) kaα  
increases; (2) Pmax decreases; (3) Qf decreases. However, these effects are now much smaller 
than when the aspect ratio was increased. The effects are summarised in Table 2. 

 
Table 2. Effect of increasing s on resonance properties 

 
Aspect ratio α  Order s kaα  kaα  / ka1 Pmax Qf 
1 2 0.01359 1 147.09 75 
1 8 0.01373 1.0103 145.61 72 
1 32 0.01379 1.0147 145.01 73 

10 2 0.01686 1 118.70 37 
10 8 0.01718 1.0189 116.47 36 
10 32 0.01730 1.0261 115.65 36 
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Figure 3. Variations in resonance peak with s. (a) α=1. (b) α=10. In both 
cases: s = 2 (solid line); s = 8 (dashed line); s = 32 (dot-dash line). 

 
 A value α=10 (rather than greater) was chosen here because this is an aspect ratio 

more typical for fish swimbladders. Figure 1 shows that when s=32, the shape of the scatterer 
already approximates closely to a right circular cylinder. Further computations  (not shown) 
indicate that higher values of s do not lead to significant changes in kaα , Pmax, and Qf . 

Table 3 shows values of the broadside to endfire scattered field ratio for both 
monostatic and bistatic (incident angles θi = 0°  and θi = 90°)geometries. 

 
Table 3. Ratios of broadside to endfire scattering amplitude 

  
α   s Ratio (mono) Ratio (bi : θi = 0°) Ratio (bi : θi = 90°) 
1 2 1 1 1 
10 2 1.0021 1.0010 1.0010 
40 2 1.0212 1.0104 1.0102 

1 32 1.0000 1.0000 1.0000 
10 32 1.0025 1.0012 1.0012 
40 32 1.0240 1.0113 1.0113 
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The objects were insonified at the appropriate resonance frequency, as indicated in Tables 1 
and 2, for each combination of α  and s. Even for values as high as α =40 and  s=32, the 
azimuthal distribution of the scattered field is essentially spherically symmetric. Table 3 
shows that the field deviates from spherical symmetry by less than 3% for either monostatic 
or bistatic scattering schemes. 

The results presented in this work support the assumption that the effect of introducing 
irregularities onto the surfaces of bubbles and swimbladders, insonified at low frequency, is 
generally negligible. The monopole resonance, which leads to a spherically symmetric 
scattering distribution, continues to dominate low frequency scattering even for cylindrically 
shaped, air-filled, objects with an aspect ratio up to α = 40. The use of spherical scatterer 
models to describe low frequency scattering from fish swimbladders appears to be well 
justified.  
 
References 
Tate, John T (1969). “Physics of Sound in the Sea”. U.S. Government Printing Office, Washington 

DC, USA.  
Minnaert, M (1933). "On musical air-bubbles and the sounds of running water". Philosophical 

Magazine, (16),  235-248. 
Anderson, V C (1950), "Sound scattering from a fluid sphere" Journal of the Acoustical Society of 

America, (22),  426-431. 
Strasberg, M (1953). "The pulsation frequency of nonspherical gas bubbles in liquids," Journal of the 

Acoustical Society of America, (25),  536-537. 
Weston, D E (1967). "Sound propagation in the presence of bladder fish". in “Underwater Acoustics”. 

Plenum, New York, USA. 
Ye, Z 1(998). "Low frequency acoustic scattering by gas-filled prolate spheroids. II. Comparison with 

exact solution". Journal of the Acoustical Society of America, (103) 2, 822-826. 
Feuillade, C; Werby, M W (1994). " Resonances of deformed gas bubbles in liquid". Journal of the 

Acoustical Society of America, (96) 6,  536-537.  
Waterman, P C (1969). "New formulation of acoustic scattering". Journal of the Acoustical Society of 

America, (45) ,  1417-1429. T.K. Stanton, "Sound scattering by cylinders of finite length. I. 
Fluid cylinders,"  J. Acoust. Soc. Am., 83,  55-63 (1988). 

Stanton, T K (1988). "Sound scattering by cylinders of finite length. I. Fluid cylinders". Journal of the 
Acoustical Society of America, (83) , 55-63. 

Stanton, T K (1989). "Sound scattering by cylinders of finite length. III. Deformed cylinders". Journal 
of the Acoustical Society of America, (86) , 691-705. 

Barrowes, Ben (2007) “http://webscripts.softpedia.com/script/Scientific-Engineering-
Ruby/Mathematics/Multiple-Precision-Toolbox-for-MATLAB-34002.html” 

 
     
 


