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ABSTRACT

The propagation of linear and nonlinear waves (phonons) in
finite  1-D  lattices  with  different  interaction  potentials  is
numerically  studied.  These  potentials  are  elastic  linear
potentials (the classical mass-spring system), and Coulomb-
type potentials (nonlinear magnetic coupling). To excite the
waves  in  the  lattice,  harmonic  driving at  the boundary  is
considered.  We show the  presence  of  different  modes  as
higher harmonics and sub-harmonics, induced by the non-
linearity  of  the system. The study is  also focused  on the
influence of the time dependence of lattice parameters (mass
and coupling strength) in the mode excitation. This analysis
of  time  varying  lattices  is  performed  for  a  simple  mass-
spring  system,  and  reveals  novel  features  of  wave
phenomena characteristic of discrete systems. 
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1. INTRODUCTION

In order to understand the behavior of periodic materials &
structures, we can at first approximate the system to a 1-D
lattice, and then expand to 2-D & 3-D. This paper will only
deal with 1-D lattice. We are using two different models to
model the lattice: the first one is the classical mass-spring
system, in which the interaction potentials are linear; and the
second  one  is  a  magnets  chain,  where  the  interaction
potentials  are  non-linear  (Coulomb-type).  All  the
simulations  with  these  models  are  made  using  a  FDTD
method. Mono- and diatomic cases are considered for each
model. Finally, time-varying parameters on a simple mass-
spring  system  are  studied.  These  results  can  then  be
expanded to a more complex in the future.

2. MASS-SPRING CHAIN

The first model we will study is the classical mass-spring
chain. Two cases are considered for this: monoatomic, and
diatomic chain. A monoatomic chain is a chain where each
element has the same parameters. In our case, all the masses
are the same and all the springs have the same stiffness. The
diatomic chain is a chain with two different values for the
masses, stiffness of the springs, and length of the springs.
The studied chain is shown in Figure 1.

Figure 1. Layout of the studied mass-spring system.

In  this  figure,  d1 and  d2 are the  inter-atomic  distances
between  the  atoms being  at  their  equilibrium position  x0n

(thus the length of the springs at rest).  N is the number of
atoms in the chain, m1 and m2 are the masses of the atoms, k1

and  k2 are  the  stiffnesses  of  the  springs.  We  define  the
relative  position  of  the  n-th  atom  with  respect  to  its
equilibrium position as un = xn – x0n. 

2.1. Dispersion relation

To obtain the dispersion relation of the diatomic chain, we
need  at  first  to  get  the  motion  equation  of  both  possible
situations for an atom in this chain: either with mass m1 and
the spring with  k1  and  d1 parameters  on its  right,  and the
other spring on its  left, or with mass  m2 and the inverted
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order for the springs. Assuming the first situation happens
for  the  n-th  atom,  the motion equations  are  expressed  as
such:

− m1 ün=k 2un −1+(− k 1− k 2)un+k 1 un+1               (2)

− m2 ¨un+1=k 1un+(− k 1− k 2)un+1+k 2 un+2             (3)

We can then assume the general solution for un:

un=A1⋅exp(i( n+1
2

d 1+
n− 1

2
d 2)k w − ωt)    (4)

un+1=A2⋅exp(i
n+1

2 (d 1+d 2)k w − ω t)        (5)

With A1 and A2  two amplitudes,  i the imaginary unit and ω
the  frequency  of  the  wave  inside  the  chain.  Then,  by
respectively implementing eqs. (4) and (5) in eqs. (2) and
(3) we obtain the following system:

{A1 (− m1ω2+k 1+k 2)+A2 (−k 2 e−id 1k w − k1 e id2 k w )=0

A1 (− k 1e
−id 2 k w − k 2 e

id 1 k w)+A2 (−m2ω
2+k 1+k 2)=0

  (6)

Then we express this system in a matrix form as such:

[ −m1 ω2+k 1+k 2

− k 1e−id 2 k w −k 2 e id1 k w

−k 2 e−id 1 k w − k1 e id2 k w

−m2ω2+k1+k 2
]⋅[A1

A2
]=0  (7)        

This implies that the determinant of the first matrix is null.
We  can  obtain  ω  by  solving  the  equation  for  the
determinant, and we finally get:

ω
2=

k1+k 2

2 M
± √(k1+k2

2 M )
2

− 2 k 1 k 2 (1 − cos ( ( d 1+d 2 ) ) k w ) ,

M =( 1
m1

+ 1
m2

)
−1

  (8)

This implies the existence of two solutions for ω, and hence
the existence  of  two different  branches  for  the dispersion
relation  as  we  can  see  of  Figure  2.  These  two  branches
correspond  to  two  different  vibration  behaviors:  in  the
acoustical branch (in red on the graph), consecutive atoms in
the chain move more less in phase; in the optical branch (in
blue on the graph), they move more or less out of phase.

We can also see that the two branches are separated by
a  band  gap.  The  width  of  this  band  gap  can  easily  be
determined by subtracting the maximum of the acoustical
branch to the minimum of the optical branch, which gives:

Δω=√( k 1+k 2

M
− 4√ k 1k 2

m1m2
)                 (9)

       
Figure 2.  Dispersion relation for a chain with  N=9,  m1 =
0.1, m2 = 0.145, k1 = 3,86, k2 = 29,8, d1 = 0.28, d2 = 0.325.

On Figure 2, we can observe the presence of a mode in the
band  gap.  During  the  solving  of  the  eigenproblem,  the
eigenfrequency for this mode was determined. But since it's
located in the band gap, it manifests itself as an evanescent
resonance.  Thus,  it  happens  only  when  the  chain  is
externally stimulated, around the excitation point. 

2.2. Motion study

We are now exciting the chain with a sinusoidal force on the
first atom. Results are obtained via an FDTD method. The
FDTD scheme used is the following: 

u n ( t )=2 un ( t − Δ t )− un ( t −2 Δ t )+ Δ t2

mn

F D ( t − Δ t )

−
Δ t2

mn

k n−1 ( un ( t − Δ t )− un −1 ( t − Δ t ) )

−
Δ t2

mn

k n ( un ( t − Δ t )+un+1 ( t − Δ t ) )

   (10)

With the driving force  FD  = AD sin(ωt), AD the amplitude
of the force, mn the mass of the n-th atom, kn the stiffness of
the n-th spring, and Δt the time step for the method. Figure 3
shows the power spectral  density (PSD) for the motion of
each  atom in the  chain,  with the  same parameters  as  for
Figure  1.  At  first,  the  chain  is  stimulated  at  the
eigenfrequency located in the band gap. For all the atoms,



we see all the propagative modes being stimulated, and the
evanescent one previously discussed is only visible around
the  excitation  point.  This  allows  us  to  see  the  modal
distribution  of  the  chain.  The  two  branches  are  easily
noticeable,  as  well  as  the  band  gap.  Then  we  excite  the
chain at half the frequency of mode 4 to see if there is any
kind  of  harmonics  generation  due  to  some  nonlinear
behavior  that  can  stimulate  this  mode.  We then  see  that
some  other  modes  are  stimulated,  but  only  because  the
system is discrete, implying that waves can only propagate
at modal frequencies.  The aimed mode (i.e.  mode 4) isn’t
stimulated,  we  can  then  assume  that  the  system  doesn’t
generate harmonics, hence behaves mainly linearly. 

Figure 3. Normalized PSDs of the atoms with excitation on
the  first  atom.  a)  with  the  driving  frequency  at  the
evanescent resonance. b) with the driving frequency at half
of the mode 4.

3. MONOATOMIC MAGNETS CHAIN

The  springs  are  now  replaced  by  repulsive  magnetic
potentials.  By  doing  as  such,  we  make  the  interatomic
potentials  non-linear.  This  implies  some  changes  in  the
behavior  of  the  chain,  as  well  as  its  layout,  as  shown in
Figure  4.  All  magnets  have  the  same  mass  m  and  are
separated from a distance  d at rest state. The  α parameter
can  change  depending  on  the  particular  system.  For
instance, α = 2 for electrically charged particles, or α = 4 for
distant magnetic dipoles. β is the strength of the magnets.

Figure 4. Monoatomic magnets lattice layout.

3.1. Dispersion relation

A  good  model  to  describe  this  system  is  provided  and
described  in  Ref.  [1].  For  such  a  system,  the  dispersion
relation is expressed as such : 

ω=ωm⋅√sin 2(k w

2 ) ,

ωm=√ 4 α β

m d α+1

                      (11)

Where ωm is the maximum frequency for propagative waves
in the lattice, and kw is again the wavenumber for the wave
propagating in the chain. The chain being monoatomic, the
dispersion relation only has one branch, and is pretty similar
to the monoatomic mass-spring one [2]. Figure 5. shows the
dispersion relation for this chain, restricted to the half period
for the same reasons as for the mass-spring chain. 

Figure  5.  Dispersion  relation  for  a  magnets  chain  with
N = 9, α = 4,  β = 5, d = 1.

3.2. Motion study

We now excite the chain in the same way as before.  The
FDTD  scheme  used  for  the  calculations  is  expressed  as
such: 



un
( t )=2un

( t − Δt ) − un
( t − 2 Δt )+

Δt 2

m
⋅ ( γ+F D

( t − Δt ) ) ,

γ=β ⋅( 1

d − un+1
( t − Δt )+u n

(t − Δ t )
α −

1

d − un
( t − Δt )+un −1

( t − Δ t )
α )

 (12)

The γ term induces the non-linearities of the system, that we
will  observe  with  Figure  6.,  which shows the  normalized
PSDs of the motion of the atoms in different situations: 
lower or higher amplitude of excitation, and two different
driving frequencies.  The main phenomenon to observe here
is  that  with  a  higher  amplitude  of  excitation,  the  system
generates more harmonics, as visible comparing Figures 6.a
and 6.c. There is also a strong generation of harmonics when
the  driving  frequency  is  half  of  an  eigenfrequency,  even
visible at lower amplitudes of excitation. 

Figure 6. Normalized PSDs of the atoms with excitation at
the first atom. a) low amplitude, driving frequency equal to
the 5th eigenfrequency. b) low amplitude, driving frequency
equal to half of the 5th eigenfrequency. c) high amplitude,
driving frequency equal to the 5th eigenfrequency. d) high
amplitude,  driving  frequency  equal  to  half  of  the  5th

eigenfrequency.

4. TIME-VARYING PARAMETERS

We  finally  study  the  behavior  of  a  simple  mass-spring
system with time-varying mass and stiffness.  The goal of
this chapter is to get a first understanding of the behavior of
a lattice with time-varying parameters,  that  could be then
expanded to a full lattice (linear or non-linear). The studied
system is described in Figure 7.

Figure 7.  Mass-spring system with time-varying mass and
stiffness.

The mass and stiffness are expressed as such :

m (t )=m0+ Amsin (2 π f m t )                (13)

k ( t )=k 0+Ak sin (2 π f k t )                  (14)     

With  m0 and  k0 the static parts,  Am and  Ak  the modulation
amplitudes,  and  fm  and  fk the  modulation  frequencies,  all
respectively  of  the  mass  and  the  stiffness.  The following
equation shows the FDTD scheme used for the simulations
of this system:

u ( t )=2u ( t − Δ t ) −u ( t − 2 Δt )

−
Δ t2

m ( t − Δ t )
[ k ( t − Δ t ) u (t − 2 Δt ) − F D ( t −2 Δ t ) ]

  (15)

With u(t) the relative displacement of the mass along the x-
axis with  respect  to  its  equilibrium  position,  and  FD the
driving frequency. Figure 8 shows the  PSDs of the system
with and without modulations of the mass and stiffness. 

The  most  visible  phenomenon  is  that  the  higher  the
amplitude, the higher the number of harmonics there will be.
The  harmonics  are  centered  both  around  the  driving
frequency,  and the resonance frequency, and are regularly
scattered,  separated  by  the  difference  between  these
frequencies and the modulation frequency. There is also a
shift of the resonant frequency for both modulations when
the amplitude is higher, and the scattering of the harmonics
follows  this  shift  too.  The  harmonics  generation  for  the
stiffness modulation tends to be focused around the resonant
frequency and less near the driving frequency, whereas the
mass  modulation  generates  harmonics  around  both
frequencies.  Another  interesting phenomenon is that  since
the  mass  and  stiffness  are  varying,  the  eigenfrequency  is
also varying in time, creating a resonance "range", as show
the gray regions on Figure 8. In this range, the harmonics
don't decrease as much as outside of it. 

This  system does  possess  some  non-linear  properties
that we can find as well in the magnets chain,  in a more
predictable way (evenly scattered harmonics, centered about
the driving and resonant frequencies,...).



 

Figure 8. PSD of the motion of the atom with m0 = 0.1 and
k0 = 3.86. a) low amplitude of modulation, mass modulation.
b)  high  amplitude,  mass  modulation.  c)  low  amplitude,
stiffness modulation. d) high amplitude, stiffness modulation.

5. CONCLUSION

Two  different  types  of  1-D  discrete  lattices  have  been
studied,  with  different  interaction  potentials  that  imply
different  types  of  behavior.  Some  non-linear  phenomena
have  been  enlightened,  mostly  due  to  the  excitation
amplitude on the chain. Then a first glance at time-varying
parameters  structures  has  been  made,  by  studying  the
motion of a simple mass-spring system with varying mass
and stiffness with respect  to time. Time-varying structures
are  complex  and  still  to  be  studied.  Although the  results

obtained in this paper are only numerical, they can already
give the idea of  some features  and behaviors of potential
real  systems.  Results  from  chapter  4  could  be  then
extrapolated  to  more  complex  lattices,  such  as  the  two
lattices  studied  in  this  paper.  Making  a  real  system with
time-varying  masses  seems  to  be  quite  complex,  but
modulating  other  parameters,  such  as  the  interactions
between the elements of the chain, has already been made
and shows interesting results [3]. 
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