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ABSTRACT 

 

In recent years, the interest in the research of 

transmissibility functions rose for several applications, like 

Force Identification, Operational Modal Analysis, 
Operational Transfer Path Analysis, etc. 

In this work, the authors analyze a formulation based on 

the Finite Element Method (FEM) and the computational 

effort of two methods used to obtain the transmissibility 

functions for acoustic and vibro-acoustic models. 

In the first method, the required receptances are 

extracted from the inverse of the global dynamic stiffness 

matrix and multiplied to obtain the transmissibility between 

the involved responses. In the second, the required 

receptances are extracted from the respective adjugates of 

the global dynamic stiffness matrix to obtain the 

transmissibility. 
A review and comparison of the two methods is 

presented for acoustic and vibro-acoustic models. To verify 

and compare both methods, two simple examples are 

presented. The transmissibility analyses are conducted 

using a FEM code from where the matrices are extracted 

and imported to a routine, developed in Matlab 

environment, used to compute the transmissibility 

functions estimated by these two methods. The simulation 

times and accuracy obtained using these methods are 

presented and briefly discussed. The obtained results 

confirm the expected significant computational time 
reduction without loss of accuracy.  

 

Keywords— Transmissibility functions, vibro-

acoustic, finite element, computational effort, adjugate 

matrix. 

 

 

 

1. INTRODUCTION 

 

The transmissibility concept has been successfully applied 

to several problems. In [1, 2], the main definitions of 
vibrational transmissibility are presented for Multi-

Degrees-of-Freedom (MDOF) mass-spring systems. These 

formulations were latter applied to beams [3-6]. The 

concept was then extended to acoustics, and used to analyse 

simplified aircraft interiors [7, 8]. A recent application of 

this concept is in estimating responses in vibro-acoustic 

systems [9]. 

The numerical analysis of transmissibility 

functions may be time-costly for systems with high number 

of Degrees of Freedom (DOfs) [7].  

In this work is applied a numerical technique that 
uses only the necessary DOFs of the system, thereby 

decreasing the simulation time required to compute these 

transmissibilities. 

Here, the transmissibility functions of structural, 

acoustic, and vibro-acoustic systems, are obtained using the 

FEM to obtain the global matrices.  

The methodologies developed by previous authors 

[7, 9], used the entire inverse of the dynamic stiffness 

matrix to obtain the receptance matrix. However, only a 

few entries of the receptance matrix are usually required to 

obtain the transmissibility. In this work, the authors use the 

required adjugate of the dynamic stiffness matrix to obtain 

the necessary entries of the receptance matrix. 

The methodologies proposed reduces the 
computational effort required to obtain the steady-state 

transmissibility functions in the frequency domain. The 

effectiveness is evaluated by the comparison of simulation 

elapsed and CPU times. The simulation times obtained by 

using the adjugate of the dynamic stiffness matrix to obtain 

only the necessary entries of the receptance matrix are 

compared with the simulation times obtained by using the 

entire inverse of the dynamic stiffness matrix. 

The reduction of the computational effort required 

to conduct the transmissibility analyses is essential in 

applications of the transmissibility concept. In addition, 

e.g., source identification in acoustic and vibro-acoustic 
systems require a considerable amount of computational 

effort. Therefore, the decrease of the computational effort 

is really relevant. 

 

2. THE TRANSMISSIBILITY CONCEPT 

 

In this section the theoretical fundamentals necessary to 

evaluate transmissibility functions in structural, acoustic 

and vibro-acoustic systems are presented. 

 

2.1. Vibrational Transmissibility 
 

The displacement transmissibility is described in [3], and 

involves the definition of a set of coordinates A where the 

forces FA are applied, a set of coordinates U where the 

responses XU are unknown, and a set of coordinates K 

where the responses XK are known. Using these coordinate 

sets, one may write, in terms of the receptance matrix H, 

the following equations. 

 

𝑋𝑈  = 𝐻𝑈𝐴   𝐹𝐴                                      (1) 

𝑋𝐾  = 𝐻𝐾𝐴   𝐹𝐴                                      (2) 

 

Eliminating FA from the previous equations, one 

obtains 

 

𝑋𝑈  = 𝐻𝑈𝐴  𝐻𝐾𝐴
+ 𝑋𝐾 = 𝑇𝑈𝐾

𝐴+𝑋𝐾                      (3) 

 

For the transmissibility of forces, considering a set 

of coordinates K of known applied loads FK, and a set U of 

unknown reactions FU , one may write 

 

{

𝑋𝐾

𝑋𝑈

𝑋𝐶

} = [

𝐻𝐾𝐾 𝐻𝐾𝑈

𝐻𝑈𝐾 𝐻𝑈𝑈

𝐻𝐶𝐾 𝐻𝐶𝑈

] {
𝐹𝐾

𝐹𝑈
}                     (4) 

 

where XC are the responses at the remaining coordinates. 

Assuming that the responses XU are equal to zero, one may 

obtain the transmissibility matrix in the following manner 

 



 

𝐹𝑈  = −𝐻𝑈𝑈
−1  𝐻𝑈𝐾 𝐹𝐾 = 𝑇𝑈𝐾𝐹𝐾                     (5) 

 

2.2. Acoustic Transmissibility 

 

An acoustic system can be modelled in the frequency 

domain by the following equation 
 

(𝐾𝑓−ω2𝑀𝑓 +  𝑖𝜔𝐶𝑓)𝑃(𝜔)  =  𝑄(𝜔)   (6) 

 

where ω is the angular frequency, 𝐾𝑓 and 𝑀𝑓 are 

respectively the global stiffness and global mass matrices 

of the acoustic medium (fluid), P is the acoustic pressure 

amplitude vector and Q is the volume accelerator vector. 

Equation (6) can be rewritten using the frequency response 

matrix [H(ω)] in the following manner. 

 

𝑃(𝜔)  =  𝐻(𝜔)𝑄(𝜔)                (7) 

 

Considering the three sets of coordinates 

illustrated in figure 2.1, one can obtain the pressure 

transmissibility. The set U is the set of coordinates where 

the pressures may be imposed, set K is the set of 

coordinates where the pressures are known, and set C is the 

set of the remaining coordinates. 

 

 

Figure 1. Schematic of the acoustic domain discretized in the 

sets of coordinates K, U  and C [7]. 

 

Using these coordinate sets and assuming no 

loading in set C, one can rewrite equation (7) in the 

following manner 

 

{

𝑃𝐾

𝑃𝑈

𝑃𝐶

} = [

𝐻𝐾𝐾 𝐻𝐾𝑈

𝐻𝑈𝐾 𝐻𝑈𝑈

𝐻𝐶𝐾 𝐻𝐶𝑈

] {
𝑄𝐾

𝑄𝑈
}                     (8) 

 

Now, solving the second line for QU, substituting 

it in the first line and considering no loads in set K (QK = 

0), the following expression is obtained for a given pressure 

PU [7]: 

 

𝑃𝐾  = 𝐻𝐾𝑈  𝐻𝑈𝑈
−1𝑃𝑈 = 𝑇𝑈𝐾𝑃𝑈                     (9) 

 

which defines a pressure transmissibility matrix TUK. 

 

2.3. Vibro-Acoustic Transmissibility 

 
To determine the transmissibility matrix in a Fluid-

Structure Interaction (FSI) one must use its coupled model 

- indicated by ‘S’ for solid part, ‘a’ for acoustic fluid part 

and ‘C’ the interface-  where the finite element equation 

may be given by 

 

([
𝐾𝑆 𝐾𝐶

0 𝐾𝑎

] + 𝑖𝜔 [
𝐶𝑆 0

0 𝐶𝑎

]

− 𝜔2 [
𝑀𝑆 0

−𝜌0𝐾𝐶
𝑡 𝑀𝑎

]) {
𝑢𝑖

𝑝𝑖
} 

= {
𝐹𝑠𝑖

𝐹𝑎𝑖
} (10) 

where K, M and C are the  respective global stiffness, global 

mass and global damping matrices. The componentes ui 

indicate nodal displacements, pi the nodal pressures, FSi the 

nodal loads in the solid part and Fai the nodal loads in the 

acoustic fluid. 

One may define the set of coordinates U where the 

displacements may be imposed, and the set of coordinates 

K where the pressure responses are known. Using the 

frequency response matrix and the described coordinate 
sets U and K, one may write the following equation [9]. 

 

{
𝑢𝑈

𝑝𝐾
} = [

𝐻𝑈𝑈 𝐻𝑈𝐾

𝐻𝐾𝑈 𝐻𝐾𝐾

] {
𝐹𝑈

𝐹𝐾
}                     (11) 

 

Assuming that no forces are applied on K set 

(𝐹𝐾 = 0), one obtains the relation: 

 

𝑃𝐾  = 𝐻𝐾𝑈  𝐻𝑈𝑈
−1𝑢𝑈 = 𝑇𝑈𝐾

𝐹𝑆𝐼𝑢𝑈                      (12) 

 

where 𝑇𝑈𝐾
𝐹𝑆𝐼  is the vibro-acoustic transmissibility matrix.  

 

 

3. METHODOLOGIES 

 

To determine the transmissibility functions, the authors use 

the Finite Element m (FE) model (using a comercial 
program e.g. ANSYS APDL) to define the geometries, 

physical properties and meshes of the model. The global 

matrices of the system are then extracted and imported to 

Matlab where the transmissibility functions are computed. 

 

3.1. Inverse Matrix Method 

 

Using the global matrices K, C and M extracted from 

the FEM analysis, one can obtain the dynamic stiffness 

matrix Z  

 



 

𝑍(ω)  =  𝐾 − ω2𝑀 +  iω𝐶       (13) 

 

Then, the frequency response matrix may be obtained by 

 

 𝐻(𝜔) = 𝑍(ω) −1                     (14) 

 

After selecting the necessary entries of the receptance 

matrix, one may obtain the transmissibility matrix. 

Therefore, this method may be applied using the following 
steps: 

• Import the global matrices from ANSYS to Matlab; 

• Use the imported matrices to obtain the dynamic 

stiffness matrix Z; 

• Create a cycle to run a certain frequency range. Within 

the cycle, obtain the H matrix by using the H=inv(Z) 

command, and the submatrices HUU and HKU by selecting 

the necessary entries of H. Then, the transmissibility matrix 

is computed using the respective equation (5, 9 or 12). 

This method extracts the entire receptance matrix when 

only a few entries are needed. Therefore, one is extracting 
unnecessary data and using additional computational effort. 

 

3.2. Adjugate Matrix Method 

 

One alternative to the previous method is to use the 

adjugate of Z to extract only the necessary entries of H. 

The adjugate of a certain square matrix An×n may be 

determined by the transpose of the co-factors matrix, 

 

 𝑎𝑑𝑗(𝐴)  =  𝐶𝑇 = ((−1)𝑖+𝑗𝑀𝑖𝑗  )𝑇         (15) 

 

Mij is the determinant of the (n−1)×(n−1) matrix that results 

from deleting row j and column i from A. The adjugate of 

A is related to its inverse in the following manner 

 

 𝐴−1 =  
𝑎𝑑𝑗(𝐴)

|𝐴|
                                (16) 

 

To obtain the entries of the adjugate matrix of Z in Matlab, 

one must take the following steps: 

• Obtain the determinant of Z;  

• Create a Zaux matrix equal to Z and remove the row j and 

column i from this new matrix; 

• Compute the determinant of the resultant Zaux matrix; 

• Use (16) to obtain the required entry of H; 
• Repeat the process until needed entries have been 

computed. 

 

Then, the transmissibility matrix is computed using the 

respective equation (5, 9 or 12). This calculation requires 

less computational time, but is subjected to posible 

overflows. To overcome this issue one may use a scaling of 

the matrix, but for large matrices one proposes to work with 

the logarithm of the determinant based on the LU 

decomposition of the matrix 

 

log (|det (A)|) = log (|𝑢11|) + log (|𝑢22|) + 

. . . +log(|𝑢𝑛𝑛|) (16) 

 

 to obtain the entry of the receptance matrix by 

 

  𝐻𝑖𝑗  =  10log(|det(Zaux)|)−log(|det(Z)|)     (17) 

 

To keep the signal of the determinant, one needs to 
count the number of negative entries in the diagonal of U. 

 

 

  

 

4. RESULTS AND DISCUSSION 

 
Here one presents the results obtained using the two 

numerical approaches described in section 3. 

 

4.1. Acoustic Transmissibility 

 

This example concerns an acoustic tube similar to the 

one presented in [9]. The tube illustrated in Fig. 2 is 4 m 

long, 0.1 m wide, and is filled with an acoustic fluid. The 

mass density of the fluid is 1.21 kg/m3, the boundary 

admittance is set to 0, and the sound speed is considered to 

be 344 m/s. The boundaries are rigid and reflective and no 
FSIs are considered. The model is constructed in ANSYS 

using FLUID30 FEs. The FEs have 0.04 m lengthwise . A 

1 Pa pressure is imposed at one of the ends and the pressure 

response is measured at the mid-section of the tube along 

the center line. 

 

 

Figure 2. Schematics of the fully discretized acoustic tube. 

 
Figure 3. Acoustic transmissibilities (both methods). 

 

Both methods present the same results (see 

transmissibilities in Figure3), but using the adjugate of Z it 

is posible to extract only the necessary entries (in this case 

only two entries are needed) of H instead of the entire 



 

matrix. In table 1 the simulation times needed to compute 

the transmissibility functions are presented . 

 

Table 1. Times to obtain transmissibility (Z is a 909×909) 

  CPU Time [s] 

 

Adjugate(Z) 

1 3.688 

2 3.679 

3 3.687 

 

Inverse(Z) 

1 424.151 

2 428.396 

3 426.517 

 

 

4.2. Vibro-Acoustic Transmissibility 

 

This example concerns a vibro-acoustic tube discretized 

with FLUID30 and SHELL181 FEs. The geometry of the 

tube is the same as in the previous example, but an elastic 

plate is introduced at one end of the tube. The physical 

properties of the acoustic fluid are the same as in the 

previous example, and the structural plate has a mass 

density of 7800 kg/m3, a Young’s modulus of 210 GPa, a 

Poisson coefficient of 0.3 and a thickness of 1 mm. 

The system is discretized with 24 FEs per wavelength 
(as in [9]), and an FSI is defined in the FEs that are touching 

the plate according to [10]. As this model keeps the center 

line along the length of the tube, an 1 N harmonic load is 

imposed at the center of the plate, and the pressure response 

is obtained at the mid-section of the tube, along the center 

line. The displacement and rotation DOFs are considered to 

be fixed along the edges of the plate.  

The transmissibility function (Fig.4) is thereby obtained 

between the node where the pressure response is measured, 

and the node where the load is imposed.  

 

Figure 4. : Vibroacoustic transmissibilities (both methods). 

 

The simulation times obtained with both methods are 

presented in table 2. The Z matrix is a 501×501 matrix.  
 

Table 2. Times to obtain transmissibility 

  CPU Time [s] 

 

Adjugate(Z) 

1 2.072  

2 2.088  

3 2.065  

 1 48.394  

Inverse(Z) 2 43.390  

3 44.061  

 

Table 2 shows that using the adjugate of Z can save a 

significant amount of simulation time when obtaining the 

transmissibility functions in a vibro-acoustic system. 

 

5. CONCLUSIONS 

 

The computation of transmissibility functions in 

acoustic and vibro-acoustic systems by using the full 

inverse of the dynamic stiffness matrix proves to be a time 

consuming and inefficient method. This approach uses 

unnecessary data and increases significantly the simulation 

time. The use of the adjugate matrix proves to be a reliable 
alternative to this method. It allows the user to obtain the 

same results, and to reduce the simulation time. In fact, by 

applying the method of the adjugate matrix to the problems 

discussed in the previous section, one was able to obtain the 

transmissibility functions more than twenty times faster. 

This is a significant improvement in the Matlab routines 

designed to evaluate transmissibility functions in acoustic 

and vibro-acoustic MDOF systems. 

One major problem that arises from using the adjugate 

matrix to analyse transmissibilities, is the overflow in the 

determinants. For larger matrices, the determinants of the 
dynamic stiffness matrices tend to surpass the precision of 

Matlab. However, the methodologies described present 

some possible solutions to this problem. 

The advances presented in terms of reducing the 

computational effort required to conduct acoustic and 

vibro-acoustic transmissibility analyses may also be 

extended to the field of vibrational transmissibility, in 

particular to the transmissibility of forces in structural 

systems. In addition, the methodologies presented enable 

the analysis of larger or more refined systems, and help in 

the solution of more complex problems, such as the 

problem of source identification in acoustic and vibro-
acoustic MDOF systems. 

In conclusion, this work presents a simple methodology 

to reduce the computational effort required to evaluate 

transmissibility functions in acoustic and vibro-acoustic 

systems, and the results presented prove its effectiveness. 

Furthermore, the advances achieved with this work are 

considered to be a relevant contribution to the field of 

transmissibility and, more specifically, to the field of vibro-

acoustic transmissibility, which remains, to this day, 

relatively undeveloped. 
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