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ABSTRACT 

 
FT wind sensors measure wind speed and direction by using an 

acoustic field that is superimposed on a flow field in an acoustic 

resonator equipped with piezoelectric transducers. To improve the 

accuracy of wind measurements in compliance with the evolving 

requirements of the wind energy industry, the geometric design of 

FT wind sensors went through several design iterations to optimise 

the acoustic field and its interaction with the flow field. Finite 

Element based simulation tools are used to research and rapidly 

optimise the acoustic behaviour of FT wind sensors. The 

Multiphysics Research team ensures that the accuracy and reliability 

of the numerical methods and simulation software are adequate. 

In this paper, two acoustics software packages are compared, 

namely COMSOL Multiphysics®, a commercial software and 

NGSolve, an open-source general-purpose finite element library. 

First, a mesh convergence study is presented using a canonical 3D 

acoustic scattering problem. A practical application of FT wind 

sensors is then studied to assess the accuracy of both software. In 

this regard, the effect of different boundary treatments such as 

impedance condition and Perfectly Matched Layer are evaluated. 

Finally, CPU overhead of the direct solvers is also presented.  

 

Keywords—acoustic solvers, comsol, ngsolve, finite element 

method, acoustic resonance  
 

1. INTRODUCTION 

 
FT Technologies [1] follows an iterative research prototyping in the 

design of its wind sensor geometries. The methodology involves the 

design, testing, and evaluation of prototypes, taking into account a 

multiphysics perspective that specifically emphasizes acoustics, 

aerodynamics, and aeroacoustics amid other relevant disciplines. 

The capability to numerically simulate the physics of the interaction 

of acoustic and aerodynamic fields and the geometry enables us to 

improve our current designs and iterate over future sensor designs.   

Consequently, FT Technologies relies on high-fidelity numerical 

models and on the accuracy of numerical methods to address the 

complexity of sensor acoustics and aerodynamics [2] within the 

realm of ultrasonic frequencies, turbulent flow, and high velocities. 
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The analytical solutions for acoustic fields for such complex 

geometries are almost impossible to build and a combination of 

numerical simulations and experimental data is therefore required. 

Frequently, numerical simulations provide a deeper understanding 

of the underlying physics of the problem, revealing insights that may 

remain inaccessible through experimental measurements alone. It is 

crucial, however, when using numerical techniques to guarantee the 

high accuracy of the numerical methods through the use of 

appropriate boundary conditions, quality of the mesh, convergence 

of the solution, and numerical stability [3]. 

In this context, this paper aims to conduct a comparison 

between two acoustic software to accurately resolve in the absence 

of flow, the acoustic field of FT wind sensors governed by the scalar 

Helmholtz equation. The commercial software COMSOL 

Multiphysics® [4] and NGSolve [5], an open-source finite element 

library are utilized here. The analytical solution of the scattering of 

waves from a spherical obstacle [6] with a diameter matching that 

of an FT wind sensor is first numerically studied to showcase the 

convergence of both software as the frequency increases from          

20 kHz to 40 kHz. The sensitivity of the solution to changes in the 

mesh density and the use of first-order and second-order Lagrange 

discretization schemes are evaluated. Next, a simplified geometry of 

an FT wind sensor is employed to investigate how the size of the 

computational domain and the density of the mesh impact the 

acoustic field with the use of both software. Subsequently, the 

effectiveness of reducing reflections at the computational domain’s 

boundaries is explored using the Perfectly Matched Layer (PML) 

and Acoustics Impedance techniques. Finally, the CPU load is 

documented, and conclusions are drawn based on the numerical 

outcomes, resulting in the formulation of recommendations. 

 

2. ACOUSTIC SIMULATION SOFTWARE 

 
In this study, two acoustic simulation software are numerically 

compared for the purpose of resolving acoustic fields. The following 

paragraph provides a concise introduction to both software tools. 

 

2.1. COMSOL Multiphysics® Software 
 

The COMSOL Multiphysics® software [4] is a powerful commercial 

simulation software package that addresses the numerical modelling  



 

 

of singe-physics and coupled multiple disciplines such as 

electromagnetics, fluid flow, heat transfer, chemical reactions, 

structural mechanics, and acoustics. It offers a streamlined 

workflow that encompasses the entire process of modelling, starting 

from geometry generation to the analysis of results. Multiple 

numerical methods are available for modelling pressure acoustics, 

including the following: Finite Element Method (FEM), Boundary 

Element Method (BEM), and Hybrid FEM-BEM in the frequency 

domain and the discontinuous Galerkin finite element method (dG-

FEM) in the time domain [7]. For efficiently addressing radiation 

and scattering problems with complex geometries, the FEM proves 

to be a suitable approach for smaller-scale problems. Consequently, 

in this research, the FEM is employed along with either the PMLs 

or impedance boundary conditions to simulate the behaviour of the 

unbounded computational domain.  

All the modelling steps such as defining the physics, boundary 

conditions, discretization order and solver settings are defined 

through a single graphical user interface. The meshing is performed 

by COMSOL Multiphysics® using its own meshing algorithm and it 

can handle three-dimensional geometries and various element types, 

including tetrahedral, hexahedral, pyramidal, and prismatic. To 

solve the systems of linear equations, direct and iterative solvers are 

available in COMSOL Multiphysics®. For problems characterized 

by a small number of degrees of freedom and lower memory 

demands, selecting a direct solver such as MUMPS often proves to 

be the more advantageous choice [7]. For large 3D models, the first 

suggestion is to use iterative methods such as the multigrid, 

including GMRES with GMG and FGMRES with GMG for 

problems that exhibit sharp resonances [7]. 

 

2.1. NGSolve Software  
  

NGSolve [5] is an open-source finite element library built on top of 

Netgen/NGSolve and enables the implementation of physical 

equations and algorithms through a user-friendly Python interface. 

It also offers a unified analysis framework that is available via a GUI 

by providing a seamless integration of all the steps from geometrical 

modelling to analysis and visualization. Similar to the preceding 

section featuring COMSOL Multiphysics®, the FEM is utilized in 

the context of NGSolve. Within the framework of FEM, the choice 

of test functions and basis functions lead to different finite element 

method formulations. The Galerkin method is used to discretize the 

mathematical model equations for both software.  
The three-dimensional finite element mesh generator Gmsh [8] 

is employed and it has been integrated into NGSolve’s framework. 

It can also handle various types of two and three-dimensional 

elements. Both direct and iterative solvers are available within 

NGSOLVE. To facilitate comparison in terms of CPU loads with  

COMSOL Multiphysics®, a direct solver has been chosen as the 

primary option.  

 

3. GOVERNING EQUATION  

 
The analysis of the scattering of waves from a spherical obstacle 

alongside the acoustic field of FT wind sensors in the absence of 

flow is governed by the scalar Helmholtz equation. For an inviscid, 

compressible, and irrotational fluid, with no mean flow or source 

term, the acoustic pressure, p satisfies the wave equation (1), see [9]. 

 

∇2𝑝 −
1

𝑐2

𝜕2𝑝

𝜕𝑡2 = 0                              (1) 

with c being the speed of sound. For a time-harmonic vibration at 

pulsation 𝜔 with amplitude P, such that 𝑝 = 𝑃𝑒𝑖𝜔𝑡, the equation (1) 

reduces to the scalar Helmholtz equation (2): 

 

∇2𝑝 + 𝑘2𝑝 = 0                              (2) 

 
Here 𝑘 = 𝜔 𝑐⁄  represents the wavenumber, which is also equivalent 

to 𝑘 = 2𝜋 𝜆⁄  with 𝜆 being the wavelength of the acoustics pressure. 

In this study, the following boundary conditions are considered.  

Sound-hard boundary (wall): The normal component of the 

velocity is zero. In simple terms, this also refers to the normal 

derivate of the total acoustic pressure being zero, thus, 𝜕𝑝 𝜕𝐧⁄ = 0 

where 𝐧 is the unit normal vector to the wall. 

Prescribed normal velocity: It relates the velocity to acoustic 

pressure as 𝑣n = −𝑖
1

𝜌𝜔
𝜕𝑝 𝜕𝐧⁄ , where 𝜌 is the density of the 

medium and 𝑖 the imaginary unit.  

Sommerfeld radiation condition: For an exterior problem, 

the acoustic wave radiates from a source must scatter to infinity and 

this is mathematically expressed as the Sommerfeld radiation 

condition [10]: 

 

 lim
|𝐫|→∞

|𝐫| (
𝜕

𝜕|𝐫|
+ i𝑘) 𝑝(𝐫) = 0                              (3) 

 

here 𝐫 denotes the position vector of a point in three-dimensional 

space with respect to origin. The system of equations (2)-(3) with 

boundary conditions forms the Helmholtz equation system that 

needs to be solved with an appropriate numerical method.  

The absorption of sound in air through thermal conduction 

effects, viscous effects, and molecular relaxation [11] processes are 

not accounted for in this study. In this context, pressure acoustics is 

only modelled.    

 

4. PROBLEM FORMULATION AND 

NUMERICAL STUDIES 

 
In this section, numerical outcomes corresponding to the scattering 

of plane wave by a rigid sphere, as well as the acoustic field of a 

simplified geometry of the FT wind sensor are showcased through 

the use of the NGSolve and COMSOL Multiphysics® software.  

The acoustics resonance anemometer, invented by Savvas 

Kapartis [12], measures phase shifts between a pair of transducers 

induced by the flow of a fluid within an acoustic resonant cavity. A 

standing wave perpendicular to the direction of the flow of the fluid 

and a travelling wave perpendicular to the standing wave is created 

in the acoustic resonant cavity and it is energised by one of the three 

ultrasonic transducers. Through the utilization of phase shifts at 

resonance between the acoustic signal of a pair of transducers, it is 

possible to compute the fluid flow velocity and its direction. The 

sensor inherently compensates for variations in the environment, 

specifically, temperature, humidity and pressure, resulting in a 

technology immune to changes in the speed of sound.  Furthermore, 

operating within ultrasonic resonances offers a high signal-to-noise 

ratio advantage. This, in combination with a solid-state (no moving 

parts) technology, provides a well-suited anemometer for a diverse 

harsh environmental scenario where accuracy both on the flow field 

and direction is essential.   

Figure 1 shows a simplified FT742 wind sensor geometry 

where grooves, notches, and turbulators were removed and the 

resonator cavity was simplified. The sensor has an external diameter 



 

 

of 55 mm and the entrance to the resonator cavity measures 9.5 mm. 

This in combination with an internal step of 0.5 mm results in a 

resonator gap of 10 mm.  

The structural mechanical and piezoelectricity coupling of the 

transducers with the acoustic resonator anemometer is not modelled 

in this study. Instead, the transducers are modelled using a 

prescribed normal velocity.  

 

Figure 1: Simplified FT742 wind sensor geometry [1].  

 

As stated earlier, FT wind sensors operate within the ultrasonic 

frequency range and in the absence of flow, the standing wave 

generated inside the acoustic resonator is excited a one wavelength, 

coinciding with the resonator gap of 10 mm. At an ambient 

temperature of 20°C and with zero wind speed, the resonance 

frequency is determined to be 35.2 kHz.  

 

4.1 Scattering of Plane Wave from a Spherical Obstacle 

 
The analysis of the scattering of waves from a rigid spherical 

obstacle is a well-studied problem in acoustics [6]. It contains an 

analytical solution that can serve as a reference for assessing the 

performance of acoustics software. In this context, this canonical 

problem is employed to illustrate the convergence of the numerical 

methods, as accurately capturing scattering becomes more 

challenging with increasing frequency [13].  

Let us assume that a plane wave of the form 𝑝𝑝𝑒𝑖𝑘𝑥 is 

propagating in the x-direction and is impinged upon a rigid sphere 

of radius 𝑎. The analytical solution for the scattered pressure field 

due to the incident plane wave is given by [14]: 

 

𝑝𝑠(𝑟, 𝜃) = −𝑝𝑝 ∑ (2𝑚 + 1)𝑖𝑚
𝐽𝑚

′ (𝑘𝑎)

𝐻𝑚
′ (𝑘𝑎)

∞

𝑚=0

𝑃𝑚(cos 𝜃)𝐻𝑚(𝑘𝑟) (4) 

 
where 𝐽𝑚 is the spherical Bessel function of the first kind, 𝐻𝑚is the 

spherical Hankel function of the second kind, 𝑃𝑚 is the Legendre 

function of the first kind, and (𝑟, 𝜃) are the polar coordinates. The 

primed function such as 𝐽𝑚
′ (𝑘𝑎) indicates a derivative of 𝐽𝑚(𝑘𝑎) 

with respect to its argument 𝑘𝑎. The total pressure is computed as 

the sum of the incident field and scattered field, with 𝑝𝑝 = 1 and is 

given by: 

 
𝑝 = 𝑝𝑠 + 𝑝𝑝𝑒𝑖𝑘𝑥                                     (5) 

 
NGSolve and COMSOL Multiphysics® acoustics software are 

employed to calculate the numerical error, denoted here as 𝑝ℎ, with 

respect to the analytical solution 𝑝. A direct solver is used for both 

software. The error in the finite element solution 𝑝ℎ is given by the 

following equation: 

 

𝑒ℎ =
‖𝑝 − 𝑝ℎ‖Ωℎ

‖𝑝‖Ωℎ

 

 
where Ωℎ is the domain of computation discretized using a finite 

element mesh. Given the three-dimensional nature of the FT wind 

sensor, it is advisable to assess the performance of both acoustic 

solvers using a spherical scattering problem. To align with the 55 

mm diameter of the sensor (see Figure 1), it is adopted here a sphere 

with a diameter of 55 mm for this study. The medium considered 

here is air with a speed of sound equal to 343.2 m/s.   

The spherical symmetry of the problem is exploited here to 

simulate just one-quarter of the complete geometry. The sensitivity 

of the numerical solution to changes in the mesh density and the use 

of first-order (linear elements) and second-order (quadratic 

elements) Lagrange discretization schemes is evaluated. The 

analysis is taken within ultrasonic frequency range, specifically at 

the frequencies of 20 kHz, 35.2 kHz, and 40 kHz. Table 1 lists the 

numerical cases performed with the solvers NGSolve and COMSOL 

Multiphysics®. Number of elements per wavelength elm 𝜆⁄  equal to 

4, 8, 10, 12, and 16 are evaluated with a first-order Lagrange, while 

4, 8, and 10 are considered with a second-order.  

 

Table 1: Numerical cases performed with NGSolve and 

COMSOL Multiphysics®, illustrating the discretization order 

and number of elements per wavelength employed. 

Discretization Order 𝐞𝐥𝐦 𝝀⁄  

First-order Lagrange (p1) 4, 8, 10,12, 16 

Second-order Lagrange (p2) 4, 8, 10 

 
Figure 2 shows a comparison between the two software in 

calculating the 𝐿2 −errors using first-order Lagrange elements at 

frequencies of 20 kHz, 35.2 kHz, and 40 kHz. As the mesh 

undergoes refinement levels by increasing the number of elements 

per wavelength, a gradual reduction is observed in the relative 

𝐿2 −error, 𝑒ℎ with both software. Nonetheless, a minimum of 12 

elements per wavelength is necessary to achieve a reduction in the 

𝐿2 −errors below 10%.  

 

 

Figure 2: Comparison between NGSolve and COMSOL® for the 

scattering of a plane wave from spherical obstacle of diameter 

55 mm, illustrating 𝑳𝟐 −errors for frequencies of 20 kHz, 35.2 

kHz and 40 kHz using first-order Lagrange elements. 



 

 

Reducing the number of elements per wavelength can be achieved 

by increasing the order of the discretization elements. In this regard, 

Figure 3 shows the relative 𝐿2 −error using a second-order Lagrange 

approximation. In order to reduce the 𝐿2 −errors within (10−1) for 

this canonical problem, the use of at least 8 elements per wavelength 

with second-order Lagrange approximation would be required. 
 

 

Figure 3: Comparison between NGSolve and COMSOL® for the 

scattering of a plane wave from spherical obstacle of diameter  

55 mm, illustrating 𝑳𝟐 −errors for frequencies of 20 kHz, 35.2 

kHz and 40 kHz using second-order Lagrange elements. 

4.2 Simplified Geometry of FT Wind Sensor 
 

The acoustic field of a simplified geometry of an FT wind sensor 

(depicted in Figure 1) is investigated using the NGSolve and 

COMSOL Multiphysics® software. Transducers are not explicitly 

modelled; instead, a unit normal velocity is applied to the 

transmitting transducer. In each case, the total acoustic pressure 

response is first averaged over the surface of the receiving 

transducer and then normalized by its maximum value. Quadratic 

Lagrange was selected for all computations and a frequency sweep 

from 34.6 kHz to 36 kHz with 20 Hz step was chosen. Computations 

were performed on a Desktop PC with Intel(R) Core(TM) i9-

10900K CPU at 3.70 GHz clock speed, 64 Gb of memory.  

 

4.2.1. Results of COMSOL Multiphysics® Acoustic Software  
 

The impact of changes in mesh density on the acoustic field of the 

simplified geometry is initially studied using an identical 

computational domain. The simulation covers the entire domain, 

including the three transducers and number of elements per 

wavelength of 4, 6, and 8. The horizontal distance to the PML 

boundaries remains constant and is set to 3 𝜆. The computational 

details of this initial test group (effect of the mesh density) are listed 

in Table 2 and indicated as ID01, ID02, and ID03. Figure 4 (a) 

illustrates the dimensions of the extended computational domain 

alongside the boundary conditions employed, utilizing a symmetry 

plane to enhance clarity. Details of the surface and volume mesh 

using a PML boundary condition using the coarsest (4 elm/𝜆) and 

finest (8 elm/𝜆) meshes are illustrated in Figure 5. The primary body 

consists of tetrahedral elements while the PML region employs 

hexahedral elements. A consistent six elements per wavelength is 

kept constant within that region and in line with recommended 

practice in COMSOL Multiphysics®.   

The acoustic response as a function of the mesh density is 
shown in Figure 6. The first peak observed at 35,200 Hz aligns with 

the resonator’s second harmonic and corresponds to a wavelength 

equal to the separation between the two parallel plates of 10 mm, 

while the subsequent peak at 35,580 Hz corresponds to one of the 

acoustics modes of the resonator. Although employing 4 elements 

per wavelength appears inadequate to capture the acoustic response, 

it becomes evident that utilizing 6 elements per wavelength with 

quadratic Lagrange elements proves sufficient for capturing the 

acoustic response while achieving a considerable reduction of the 

computational time from 35 hrs and 10 min for 8 elm/𝜆 to 8 hrs and 

3 min for 6 elm/𝜆 (see Table 2).   

Table 2: Numerical details of conducted simulations using 

COMSOL Multiphysics® for the simplified geometry of the FT 

wind sensor. BC=Boundary Condition; DB=Distance to 

Boundaries; DoF=Degree of Freedom. The direct solver 

MUMPS is used here. 

ID No Sym 

Sym 

DB elm/𝝀 DoF BC CPU(s) 

01 No Sym 3 𝜆 4 885 k PML 4827 

02 No Sym 3 𝜆 6 2308 k PML 30782 

03 No Sym 3 𝜆 8 4815 k PML 126624 

 

04 Sym 3 𝜆 6 1178 k PML 9877 

05 Sym 2 𝜆 6 803 k PML 4713 

06 Sym 1 𝜆 6 489 k PML 1966 

07 Sym 0.5 𝜆 6 361 k PML 1148 

 

08 Sym 3 𝜆 6 533 k IMP 1775 

09 Sym 2 𝜆 6 355 k IMP 981 

10 Sym 1 𝜆 6 208 k IMP 449 

11 Sym 0.5 𝜆 6 149 k IMP 281 

 

 

Figure 4: Details of (a) the extended domain and (b) reduced 

computational domain with a distance of 3𝝀 and 0.5𝝀 to PML. 

 

Figure 5: Details of the surface and volume mesh with a PML 

boundary condition using (a) 4 elm/𝝀 and (b) 8 elm/𝝀. 



 

 

 

Figure 6: Effect of mesh density study on acoustic response with 

a PML boundary condition.  

The effect of a symmetry plane on the acoustics response when 

using 6 elements per wavelength for a computational domain with a 

distance to the boundary equal to 3 𝜆 (Figure 4 (a)) is shown in 

Figure 7 when comparing ID2 and ID4. No differences in the 

acoustic response are evident even though a significant reduction of 

the degree of freedom is achieved. Similarly, the influence of the 

computational domain’s size is evaluated on the same graph by 

decreasing the distance from its boundary from 3 𝜆 (ID4) to 0.5 𝜆 

(ID7), while keeping all other variables constant. No changes in the 

predictions of the first and second peaks are observed. 

 

 

Figure 7: Effect of symmetry plane (ID02 vs ID04) and effect of 

computational domain size (ID04 to ID07) on acoustic response 

with a PML boundary condition. 

The last test group evaluated here is the effect of replacing the PML 

with an impedance boundary condition (ID08-ID11 in Table 2) 

whereas reducing the computational domain from 3 𝜆 to 0.5 𝜆 and 

maintaining the size number of elements per wavelength of 6 (see 

Figure 8). Despite achieving a significant reduction in CPU usage 

(281s for ID11), no substantial variations were identified in the 

prediction of the first and second peaks’ frequency when reducing 

the domain size. Similar results were obtained with PML boundary 

conditions.  

The acoustics quality factor Q, associated with the initial peak, 

could serve as a performance metric of the numerical simulations, 

providing a quantitative assessment. The most refined mesh with no 

symmetric plane applied, and featuring the largest computational 

domain yields a value of 469 for the acoustics quality factor (ID03). 

The comparison with ID04 (see Table 2) led to a 1.23% reduction in 

Q-factor (see Figure 9). The effectiveness of the PML boundary 

condition in modelling the non-reflecting infinite domain is 

manifested by comparing ID04 (BC=3 𝜆) with ID07 (BC=0.5 𝜆) 

through Q-value. A mere 1.22% decrease is observed in Q-value 

whereas a 760% reduction on the CPU is achieved.  A similar trend 

is observed when employing the impedance boundary condition 

with a reduction of 3.8% when compared ID08 (BC=3 𝜆) with ID11 

(BC=0.5 𝜆) with a reduction of 531% on CPU.  

 

 

Figure 8: Effect of computational domain size on acoustic 

response with an impedance boundary condition.  

 

Figure 9: Q-value corresponding to the first peak for cases 

performed with COMSOL Multiphysics®.   

The reason behind the minimal effect of the distance to the boundary 

either with PML or impedance boundary conditions on the acoustics 

signal and Q-value could be explained in Figure 10. It shows the 

total value of pressure at (a) the first peak frequency of 35,200 Hz 

and (b) the second peak frequency of 35,580 Hz for case ID4. As 

observed, the resonator effectively confines the acoustic field, 

minimizing the influence of the computational domain size on the 

acoustic response. 

 

Figure 10: Total value of pressure at (a) 35,200 Hz and (b) 35,580 

Hz for the case ID4 (see Table 2). 

4.2.2. Results of NGSolve Acoustic Software   
 

Considering the small impact of the treatment of the boundary 

condition on the acoustics field, the NGSolve acoustic software is 

evaluated with the use of the impedance boundary condition due to 

its ability to significantly reduce the CPU when compared with 

PML. Table 3 lists the numerical details of the simulations 

conducted with NGSolve with the direct solver Sparse Cholesky. 

This study involves the evaluation of two test groups. The first group 

focuses on the sensitivity of the solution to the mesh density (ID12-

ID15) with a fixed computational domain size (BC=3 𝜆). After 

selecting the appropriate mesh, the second group (ID16-ID18) 

focused on the impact of the distance to the boundary condition on 



 

 

the acoustic field. It is noted that to accurately capture the 

frequencies of the first and second peaks and the Q-value, a 

minimum of 10 points per wavelength is required when using 

NGSolve with second-order Lagrange discretization schemes (see 

Figure 11 and Table 3). The impact of the distance to the boundary 

conditions is also reported in Table 3 through Q-value, and a 2.43% 

decrease is observed when comparing ID14 with ID18 whereas a 

reduction of 1014% on CPU is achieved.   

Table 3: Numerical details of conducted simulations using 

NGSolve for the simplified geometry of the FT wind sensor. The 

direct solver Sparse Cholesky is used here. 

ID No Sym 

Sym 

DB elm/𝝀 DoF BC CPU(s) Q-value 

12 Sym 3 𝜆 6 164 k IMP 1627 484.3 

13 Sym 3 𝜆 8 367 k IMP 8017 449.4 

14 Sym 3 𝜆 10 696 k IMP 33125 481.7 

15 Sym 3 𝜆 12 1175 k IMP 96110 476.7 

  

16 Sym 2 𝜆 10 466 k IMP 14720 482.3 

17 Sym 1 𝜆 10 280 k IMP 6373 480.9 

18 Sym 0.5 𝜆 10 203 k IMP 2971 465.1 

 

 

Figure 11: Effect of mesh density study on acoustic response 

with an impedance boundary condition. 

 
Lastly, a comparison between the numerical solutions obtained with 

both acoustic software using the same computational domain size 

(BC=1 𝜆) is shown in Figure 12. Both curves are nearly 

indistinguishable with a difference in Q-factor of less than 1.5%. 

While COMSOL® simulations require 2.15 s per 1000 DoF when 

utilizing the direct solver MUMPS, NGSolve necessitates 22.76 s 

per 1000 DoF when employing the direct solver Sparse Cholesky on 

the same Desktop PC.        

 

 

Figure 12: Numerical comparison between both acoustic 

software using the same computational domain size (BC=1 𝝀) of 

a simplified geometry of FT wind sensor.  

5. CONCLUSIONS 

 
The commercial acoustic software COMSOL Multiphysics® and the 

open-source finite element library NGSolve are compared in this 

study using a canonical 3D acoustic scattering problem at first, and 

a simplified geometry of a FT wind sensor. In the context of the 

scattering problem, to reduce the 𝐿2 −errors within (10−1), the use 

of at least eight elements per wavelength with second-order 

Lagrange approximation would be required for both software. 

The acoustics field of the simplified FT wind sensor is not 

affected by using a symmetry condition. When using COMSOL®, 

simulations with PML and impedance boundary conditions require 

6 elm/𝜆 to capture the frequency of the first and second peaks. The 

effect of reducing the computational domain has a 1.22% and 3.8% 

decrease in Q-value for both boundary conditions, whereas a 760% 

and 531% reduction in the CPU are achieved. NGSolve requires a 

10 elm/𝜆 to accurately capture the main resonant frequency, and 

when compared to COMSOL®, a similar acoustics field is obtained. 

For the direct solvers study here, COMSOL® simulations show a 

CPU time that is one order of magnitude lower when compared with 

NGSolve. Further studies are needed to quantify how various direct 

and iterative solvers impact the CPU and memory loads.   
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