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ABSTRACT 

 

This work studies vibration and radiated noise from railway 

systems using the 2.5D Boundary Element Method (BEM) 

formulation in the Bézier-Bernstein space. The proposed 

method allows the representation of the exact geometry of the 

track as it is done in Computer-Aided Design (CAD) models. 

Thus, it is possible to evaluate problems with complex 

geometries, which are usually not adequately represented by 

the standard BEM and FEM formulations. Radiated noise is 

computed from the normal displacement at the boundary of 

the rail system according to the integral representation of the 

sound pressure. Only the track boundary is meshed, as the 

radiation condition is implicitly satisfied in the BEM 

fundamental solution. Moreover, the methodology allows the 

use of arbitrary high-order elements, making it efficient for 

the computation of radiated noise at high frequencies. The 

performance of the proposed method is shown by studying 

the mobility and the radiated noise of an 'open' rail section.  

 

Keywords— radiated noise, railway vibration, boundary 

element method, bézier curve.  

 

1. INTRODUCTION 

 

Rolling noise arising from railway systems is mostly due to 

the wheel/rail roughness. The radiated noise level depends on 

the train speed, rail roughness, and track mobility, among 

others. The track response depends on the rail, rail pads, 

sleepers and ballast layer. Accurate estimation of radiated 

noise requires a proper definition of not only track properties 

but also the geometry of radiating surfaces. Therefore, it is 

important to improve the prediction capacities of the existing 

numerical models in order to compute the sound radiation 

from the different track systems, with the aim of mitigating 

its effects. 

This work proposes a method based on the 2.5D BEM 

formulation in the Bézier–Bernstein space [1] to calculate 
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vibration and radiated noise from railway systems. This 

approach avoids mesh errors and enables evaluating the exact 

boundary geometry of complex rails sections. In addition, the 

representation of the field variables at nodal points instead of 

control variables allows an easy definition of the boundary 

conditions without any assumptions. The use of arbitrary 

high-order elements is also allowed, making it efficient for 

the computation of radiated noise at high frequencies. 

The paper is organized as follows. First, the numerical 

model is presented. The 2.5D BEM formulation for 

elastodynamic and fluid-acoustics problems is described. The 

geometry and element approximations are introduced 

according to the Bézier–Bernstein formulation. 

2. NUMERICAL MODEL 

 

A domain Ω that comprises the track system and air medium 

is decomposed into different subdomains as shown in Figure 

1. The subdomain decomposition corresponds to solid 

regions comprising the rail (Ω𝑠1) and the rail pad (Ω𝑠2), and 

the air medium (Ω𝑓). All of the subdomains are represented 

by the Boundary Element Method. Under the assumption of 

a longitudinally invariant problem in the 𝑧 direction, the 

solution is obtained in the frequency-wavenumber 𝜔 − 𝜅𝑧 
domain using a two-and-a-half dimensions (2.5D) 

formulation [1]: 

 
𝐚(𝐱, 𝜔) = ∫ 𝐚̃(𝐱̃, 𝜅𝑧, 𝜔)𝑒

−𝜄𝜅𝑧𝑧 𝑑𝜅𝑧

+∞

−∞

 (1) 

where 𝐚̃(𝐱̃, 𝜅𝑧 , 𝜔) is the frequency-wavenumber 

representation of a variable of interest (e.g., displacement or 

sound pressure), 𝜔 is the angular frequency, 𝐱 =  𝐱(𝑥, 𝑦, 𝑧) 
and 𝐱̃ =  𝐱(𝑥, 𝑦, 0). The Greek letter 𝜄 denotes the unit 

imaginary number. 

The solution of the coupled air-track system is obtained 

by imposing appropriate conditions at the solid-solid and 



 

solid-fluid interfaces. Equilibrium of forces and compatibility 

of displacements must be achieved at solid interfaces; and the 

equilibrium of normal pressure, with null shear stress, and 

continuity of normal displacement are imposed at the solid-

fluid interface 𝛤𝑠𝑓. Each subdomain is directly coupled, and 

the equations are assembled into a global system. 

 

Figure 1. Boundary subdomains definition: rail (Ω𝒔𝟏), rail pad 

(Ω𝒔𝟐) and air medium (Ω𝒇). 

 

2.1. Boundary element formulation in elastodynamics 

 

Solids in track systems such as rail and rail pad are 

represented using the BEM formulation in elastodynamics. 

The integral representation of the displacement 𝐮̃𝑖 for a point 

𝑖, with zero body forces and zero initial conditions, may be 

written as [2]: 

 

 𝐜𝑖(𝐱̃𝑖)𝐮̃𝑖(𝐱̃𝑖, 𝜅𝑧 , 𝜔)

= ∫ (𝐭̃(𝐱̃, 𝜅𝑧 , 𝜔)𝒢(𝐱̃, 𝜅𝑧 , 𝜔; 𝐱̃𝑖)
Γ𝑠

− 𝐮̃(𝐱̃, 𝜅𝑧 , 𝜔)ℋ̃(𝐱̃, 𝜅𝑧 , 𝜔; 𝐱̃𝑖)) 𝑑Γ(𝐱̃) 

(2) 

where 𝐮̃(𝐱̃, 𝜅𝑧 , 𝜔)and 𝐭̃(𝐱̃, 𝜅𝑧, 𝜔) are displacement and 

traction, respectively. 𝒢(𝐱̃, 𝜅𝑧, 𝜔; 𝐱̃𝑖) and ℋ̃(𝐱̃, 𝜅𝑧, 𝜔; 𝐱̃𝑖) are 

the full-space fundamental solution to displacement and 

traction at the point 𝐱̃ due to a point source acting at the 

collocation point 𝐱̃𝑖. The integral-free term 𝐜𝑖(𝐱̃𝑖) depends 

only on the boundary geometry at the collocation point 𝐱̃𝑖. 
The two-and-a-half-dimensional Green’s function is 

obtained by means of the potentials 𝐴̃𝑝 and 𝐴̃𝑠 for the 

irrotational and equivoluminal parts of the displacement 

vector, respectively [3]: 

 𝐴̃𝑝 =
𝜄

4𝜌𝜔2
[𝐻0
(2)(𝜅𝛼𝑟) − 𝐻0

(2)(−𝜄𝜅𝑧𝑟)]  (3) 

 𝐴̃𝑠 =
𝜄

4𝜌𝜔2
[𝐻0
(2)(𝜅𝛽𝑟) − 𝐻0

(2)(−𝜄𝜅𝑧𝑟)] (4) 

where 𝜅𝛼 = √𝜅𝑝
2 − 𝜅𝑧

2 and 𝜅𝛽 = √𝜅𝑠
2 − 𝜅𝑧

2, and 𝜅𝑝 and 

𝜅𝑠 represent the wavenumbers for dilatational and shear 

waves, respectively. 𝐻0
(2)

 is the Hankel function of the second 

kind. Thus, the displacement 𝒢𝑘𝑙(𝐱̃, 𝜅𝑧 , 𝜔; 𝐱̃𝑖) in the 𝑘 

direction at 𝐱̃ due to a point load with acting in the 𝑙 direction 

at 𝐱̃𝑖 is obtained from: 

 
𝒢̃𝑘𝑙(𝐱̃, 𝜅𝑧, 𝜔; 𝐱̃𝑖) =

𝜕2(𝐴̃𝑝 − 𝐴̃𝑠)

𝜕𝑥𝑘𝜕𝑥𝑙
+ 𝛿𝑘𝑙∇̃

2𝐴̃𝑠 (5) 

 

2.2. Boundary element formulation in fluid-acoustics 

 

The integral representation of the sound pressure in the 

frequency-wavenumber domain for a point 𝐱̃𝑖 located at the 

boundary 𝛤𝑠𝑓  can be written as: 

 𝑐𝑖(𝐱̃𝑖)𝑝𝑖(𝐱̃𝑖 , 𝜅𝑧 , 𝜔)

= −∫ (𝜄𝜌𝜔𝑣̃(𝐱̃, 𝜅𝑧 , 𝜔)Ψ̃(𝐱̃, 𝜅𝑧 , 𝜔; 𝐱̃𝑖)
Γ𝑠𝑓

+ 𝑝(𝐱̃, 𝜅𝑧, 𝜔)
𝜕Ψ̃(𝐱̃, 𝜅𝑧, 𝜔; 𝐱̃𝑖)

𝜕𝐧
)𝑑Γ𝐱̃  

(6) 

where 𝑝(𝐱̃, 𝜅𝑧, 𝜔) and 𝑣̃(𝐱̃, 𝜅𝑧 , 𝜔) are the sound pressure 

and the particle normal velocity at the boundary Γ𝑠𝑓, 

respectively. Ψ̃(𝐱̃, 𝜅𝑧 , 𝜔; 𝐱̃𝑖) represents the velocity potential 

at point 𝐱̃ due to a point source located at 𝐱̃𝑖: 
 Ψ̃(𝐱̃, 𝜅𝑧 , 𝜔; 𝐱̃𝑖) = −

𝜄

4
𝐻0
(2)(𝜅𝑓 𝑟) (7) 

where 𝜅𝑓 = √(𝜔 𝑐𝑓⁄ )2 − 𝜅𝑧
2 is the fluid wavenumber and 

𝑐𝑓 is the sound propagation velocity. 

 

2.3. Geometry and element approximation 

 

The BEM formulations presented in previous sections are 

implemented in the Bézier-Bernstein space [1]. The Bézier-

Bernstein formulation of the BEM allows for a geometry-

independent field approximation. The proposed method is 

geometrically exact, based on Computer Aided Design 

(CAD), but field variables are independently approximated 

from the geometry. We use the Bézier–Bernstein form of a 

polynomial as an approximation basis to represent both 

geometry and field variables. The application of Bernstein 

polynomials for the representation of a Bézier curve 𝑟𝑛(𝑡) is: 

 
𝑟𝑛(𝑡) = ∑𝐛𝑘𝐵𝑘

𝑛(𝑡)

𝑛

𝑘=0

 (8) 

where 𝐛𝑘 are the control points used to approximate the 

geometry and 𝑛 is the curve degree. An efficient curve 

computation is achieved using the polar form (or blossom) of 

a Bézier curve 𝑟𝑛(𝑡), which defines a multiaffine 

transformation satisfying: 

 

 𝐛𝑘 = 𝐑(0,… ,0⏟  
𝑛−𝑘

, 1, … ,1⏟  
𝑘

) (9) 

where 𝐑(𝑡1, … , 𝑡𝑛) is computed as: 



 

 𝐑(𝑡1, … , 𝑡𝑛) = ∑ ∏(1 − 𝑡𝑖)

𝑖∈𝐼𝐼∩𝐽=∅

𝐼∪𝐽={1,2,…,𝑛}

∏𝑡𝑗𝐛|𝐽|
𝑗∈𝐽

  
(10) 

Thus, a Bernstein polynomial can be formulated in polar 

form substituting Equation (9) into Equation (8) as follows: 

𝑟𝑛(𝑡) = ∑𝐑(0,… ,0⏟  
𝑛−𝑘

, 1, … ,1⏟  
𝑘

)𝐵𝑘
𝑛(𝑡)𝐑(𝑡, … , 𝑡)

𝑛

𝑘=0

 (11) 

The Bézier-Bernstein space is used to describe the exact 

element geometry as 𝛤𝑗  (𝐱) =  𝐫𝑛
𝑗
(𝑡). Hence, the element 

integrals can be written on an univariate basis t ∈ [0, 1] as [1]: 

 

 
∫ 𝑓(𝐱̃, 𝜅𝑧 , 𝜔; 𝐱̃𝑖)𝑑Γ
Γj

= ∫ 𝑓(𝐱̃(𝑡), 𝜅𝑧 , 𝜔; 𝐱̃𝑖)
1

0

 |
𝑑𝐫𝑛
𝑗

𝑑𝑡
| 𝑑𝑡 

(12) 

where 𝑓(𝐱̃, 𝜅𝑧 , 𝜔; 𝐱̃𝑖) represents the integration kernel. 

 The BEM formulation in the Bézier-Bernstein space 

employs the Lagrange interpolant relative to the Bernstein 

basis for the field variable approximation to an element. The 

field approximation given by the shape function interpolates 

(𝑛 + 1) nodal values through the element shape functions 𝜙𝑖 
of order 𝑛, for 𝑖 =  0, . . . , 𝑛. Then, the field approximation 

becomes: 

 

𝑎(𝑡) =∑𝜙𝑖(𝑡)

𝑝

𝑖=0

𝑎𝑖

=∑{∑𝑐𝑘
𝒊𝐵𝑘
𝑛(𝑡)

𝑛

𝑘=0

}

𝑝

𝑖=0

𝑎𝑖

=∑ 𝑅𝑖(𝑡, … , 𝑡)

𝑝

𝑖=0

𝑎𝑖 , 

(13) 

where the evaluation of the element shape function 𝜙𝑖(𝑡) 
also benefits from the computational advantages of using the 

polar form 𝑅𝑖(𝑡1, … , 𝑡𝑛) according to Equation (10).  

Once the geometry and the field approximation given by 

Equations (11) and (13) are introduced into the boundary 

integral equation of each subdomain, the integrals can be 

computed using a standard Gauss-Legendre quadrature with 

(𝑝 + 1) integration points whenever the collocation point is 

sufficiently distant from the integration element. Otherwise, 

the solution of singular or weakly singular integrals is 

numerically computed using the quadrature rule proposed in 

References [1, 4]. 

Then, Equations (2) and (6) are rewritten as follows: 

 𝐇̃𝑠(𝐱̃, 𝜅𝑧, 𝜔; 𝐱̃𝑖)𝐮̃(𝐱̃, 𝜅𝑧, 𝜔)

= 𝐆𝑠(𝐱̃, 𝜅𝑧, 𝜔; 𝐱̃𝑖)𝐭̃(𝐱̃, 𝜅𝑧 , 𝜔)  
(14) 

 𝐇̃𝑓(𝐱̃, 𝜅𝑧 , 𝜔; 𝐱̃𝑖)𝑝(𝐱̃, 𝜅𝑧 , 𝜔)

= 𝐆𝑠(𝐱̃, 𝜅𝑧, 𝜔; 𝐱̃𝑖)𝑣̃(𝐱̃, 𝜅𝑧, 𝜔)  
(15) 

where 𝐇̃𝑠, 𝐆𝑠, 𝐇̃𝑓  and 𝐆𝑓 are the fully non-symmetrical 

boundary element system matrices for solids and acoustic 

subdomains, respectively. 
 

2.1. Subdomains coupling procedure 

 

Solid subdomains such as rail and rail pads are coupled 

imposing equilibrium of forces and compatibility of 

displacements at solid interfaces. Equilibrium of forces at the 

interface is fulfilled integrating nodal tractions according to 

the element shape function 𝐍 =  [𝜙0, . . . , 𝜙𝑝]: 

 

 
𝐟 = ∫ 𝐍𝑇 𝐭̃𝐍 𝑑Γ

Γ𝑠

= 𝐓𝐭̃ (16) 

Substituting Equation (16) into Equation (14) yields the 

following. 

 𝐟 = 𝐓𝐆𝑠
−1𝐇̃𝑠𝐮̃ (17) 

Then the coupled system for solid subdomains is obtained 

imposing the equilibrium and compatibility conditions at the 

interface: 

 𝐊̃𝑠(𝐱̃, 𝜅𝑧 , 𝜔; 𝐱̃𝑖)𝐮̃(𝐱̃, 𝜅𝑧 , 𝜔) = 𝐟(𝐱̃, 𝜅𝑧 , 𝜔)  (18) 

The solid and fluid subdomains are assembled next. The 

coupling of Equations (15) and (18) is carried out by 

imposition of equilibrium and compatibility conditions of 

normal pressure and displacement at the interface Γ𝑠𝑓 

between the track system and the air medium, and null shear 

stresses. These conditions are fulfilled through the following 

system of equations [5]: 

 

 
[
𝐊̃𝑠 𝐑𝑇

−𝐆𝑓𝐍
𝑇 𝐇̃𝑓

] [
𝐮̃
𝑝
] [𝐟
0
]  (19) 

where 𝐑 is the coupling fluid–solid matrix which relates 

force and pressure at the interface 𝛤𝑠𝑓 : 

 
𝐟 = −∫ 𝐍𝑇𝐧𝑐𝑝 𝑑Γ

Γ𝑠𝑓

= 𝐑𝑇𝑝 (20) 

where 𝐧 is the outward normal vector at Γ𝑠𝑓. 

 

3. NUMERICAL EXAMPLE 

 

In this section, the proposed method is used to study radiated 

noise from an open rail. A standard CEN 40E1 rail with a rail 

pad is considered in this example. Rail mobility and sound 

pressure are computed in two cases: a point load acting at i) 

the midpoint and ii) the edge of the rail head (see Figure 2). 

Displacements at the rail-pad base are constrained. The sound 



 

pressure is obtained at a point located at a distance of 10 m 

horizontally and 1.5 m vertically from the center of the rail 

head. The problem solution is computed in the frequency 

range 30 −  2000 Hz for one hundred equally spaced 

wavenumbers 𝜅𝑧 in the interval from 0 to 10 rad/m. 

Three subdomains are defined to represent the rail cross 

section and the air medium. The material properties of the rail 

section are summarised in Table 1, while a fluid density 𝜌𝑓  =

 1.225 kg/m3 and sound propagation velocity 𝑐𝑓  =  340 m/

s are considered for the air. 

 

Table 1. Material properties of the rail section subdomains. 

 

 
Subdomain 

Rail Rail pad 

Young’s 

Modulus 
210 [GPa] 4.8 [MPa] 

Poisson’s ratio 0.3 0.45 

Density 7800 [kg/m3] 10 [kg/m3] 
Damping loss 

factor 
0.01 0.25 

 

The boundary geometry is represented by 31 cubic Bézier 

patches as can be seen in Figure 2. The boundary is 

discretised into elements ensuring 𝜅𝑓ℎ =  3 and a nodal 

density per wavelength 𝑑𝜆  =  2𝜋𝑝/𝜅𝑓ℎ =  12, where 𝜅𝑓  =

 𝜔/𝑐𝑓 , ℎ and 𝑝 are the element length and order. 

 

 
                  (a)       (b) 

Figure 2. (a) Load positions and (b) Boundary geometry of the 

open rail section (red line) and the related control polygons (grey 

line). 

Figure 3.(a) shows the rail mobility at the excitation point 

and the sound pressure at the observation point in the air 

medium. Rail mobility shows a peak around 240 Hz related 

to the resonance of the rail mass on the rail pad in both cases. 

Moreover, a second peak at higher frequency appears for 

edge excitation due to lateral wave propagation. These results 

are consistent with those obtained in Reference [6]. The 

maximum in the sound pressure graph appears at a frequency 

of 450 Hz (Figure 3.(b)). 

 

 
                        (a)       (b) 

Figure 3. (a) Rail mobility and (b) sound pressure. 

 
Finally, Figure 4 shows the radiated noise near the track 

system due to a load acting at the midpoint of the railhead 

considering a frequency of 1000 Hz. 

 

 

Figure 4. Radiated noise for a load acting at the midpoint of the 

railhead at a frequency of 𝟏𝟎𝟎𝟎 𝐇𝐳. 

 

4. CONCLUSIONS 

 

This work has proposed a 2.5D BEM formulation based on 

Bézier Bernstein space to study noise and vibration in railway 

systems. This formulation represents the exact geometry of 

track components that allows the analysis of complex systems 

commonly found on slab and urban tracks. Thus, the 

influence of track flexibility levels can be studied. Moreover, 

the proposed method is efficient for the computation of 

radiated noise at high frequencies since arbitrary high- order 

elements can be used independently of the geometry 

approximation. The performance of the method has been 

verified for an open rail section.  
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