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ABSTRACT 
 
The irruption of deep learning (DL) in the recent years is starting to create a turning point in many 
areas of digital signal processing. Regarding audio signal processing, machine learning (ML) 
models in general, and deep neural networks (DNNs) in particular, have shown their potential in 
the classification of acoustic events, enhancement of speech signals in the presence of noise and 
acoustic echo cancellation. In this work, we propose a DL model to synthesize room impulse 
responses (RIRs) of real enclosures by using as input parameters to the network: the Short Time 
Fourier Transform (STFT) of a measured RIR of the same room, the locations in Cartesian 
coordinates of the speaker and listener for both input and inferred RIRs, and the room dimensions. 
The results show that an appropriate selection of STFT parameters and the type of loss function 
in the DL model can improve the quality of the RIRs inferred. 
 
 
1. INTRODUCTION  
 
Artificial Intelligence (AI) has a wide application field in engineering, such as in robotics [1], image 
generation [2] and in computer vision. A field studied in AI is acoustics, with applications such as 
synthesis of natural speech from written language, voice modulation, and audio encryption. There 
has been recent interest in developing digital acoustic environments to provide a good immersion 
experience in virtual or augmented reality applications. However, the current available tools need 
high computing power and expensive investment in high quality equipment to perform as 
expected. In this paper we investigate the synthesis of a particular room impulse response (RIR) 
between two locations of a room by means of deep learning (DL) models and a set of measured 
RIRs from the same room.  
 
Signal recorded by a microphone at a determined position inside a room (s(n)) can be modelled 
by the convolution (1) of the acoustic waveform originated by the source located at a specific 
position inside the room (s(n)) with the room impulse response (RIR) modelled as a linear time-
invariant system (h(n)) of L+1 coefficients (2). 

 
𝑦(𝑛) = 𝑠(𝑛) ∗ ℎ(𝑛)    (1) 

 

ℎ(𝑛) = ℎ0𝛿(𝑛) +  ℎ1𝛿(𝑛 − 𝜏1)+ ℎ2𝛿(𝑛 − 𝜏2) + ⋯ + + ℎ𝐿𝛿(𝑛 − 𝜏𝐿) (2) 
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This model of Room Impulse Response [3,4] has been extensively used in the literature. In 
general, three parts can be distinguished in a RIR, as shown in Fig. 1. The first impulse is the 
direct path from the source to the microphone, later the first reflections arrive, those that bounce 
off the walls closer to the location of the microphone and usually denoted as “early reflection”, 
and finally, there is the late reverberation part. The measurement and quantification of the RIRs 
allow the creation of virtual acoustic spaces, in which using a clean sound source convolved with 
these RIRs would lead to virtually localizing this sound within the room [5]. 
 

 
Fig 1. Different parts of a RIR. [3] 

 
Modeling methods are usually classified into three categories: physical models, scale models and 
computational models. An often-used method is the IMS (Image Source Method) [6], where the 
concept of audio wave is replaced by that of audio ray. The method is based on the geometric 
construction of a specular reflection, copying the source in the plane that reflects the sound. 
Lately, some efficient methods to synthesize RIRs following IMS theory are available in 
repositories, as the FastRIR [7] and the gpuRIR tools [8]. 
 
Regarding the use of DL models to solve acoustic problems, one of the most used representations 
of the sound is the Short Time Fourier Transform, or STFT [9]. The STFT of an audio signal takes 
the waveform with its linear-time characteristics and converts them into a function of time and 
frequency. An example of a STFT can be seen in Fig. 2. This is calculated based on a time 
interval, called the hop size. Taking a frequency window size, and applying it to n inputs per 
window, we get the short-time Fourier transform (3). 
 

 𝑋(𝑚, 𝑘) =  ∑ 𝑤(𝑛)𝑥𝑚(𝑛)𝑒−𝑗
2𝜋

𝑁
𝑛𝑘𝑁−1

𝑛=0  , (3) 

 
Where 𝑚 is the frame index, 𝑛 is the time index, 𝑘 is the frequency index such that 0 ≤ 𝑘 < 𝑁 − 1, 

where 𝑁 is the size of the Fast Fourier transform (FFT). The window function 𝑤(𝑛) multiplies the 

𝑚-th frame of signal 𝑥(𝑛) denoted by 𝑥𝑚(𝑛) in (3). The length of the frame is selected according 
to the required resolution: short frames give good resolution in time and long frames give good 
resolution in frequency. Usually, the frames are taken with a percentage of overlap between them, 
and the FFT size is at least twice the size of the frame. In this work we have used the STFT of 
the RIRs to feed the DL models. Figure 2 shows an example of the waveform of a RIR in time 
(top) and the magnitude of its corresponding STFT (bottom). 
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Fig 2. RIR waveform in time (top) and its corresponding STFT magnitude (bottom). 
 
 
2. DEEP LEARNING APPROACH 
 
Our DL model will make use of the information provided by the STFT of a singular RIR measured 
between the source and one specific location inside the room to obtain a new RIR between the 
source and another location. This new RIR does not belong to the training dataset, thus it is a 
new RIR inferred by the DL model. A further objective of this work is to transfer the DL model 
obtained for one specific room to infer RIRs of another room with different acoustic characteristics. 
 
The DL model is based on the concept of Autoencoder (AE). This kind of model is defined by the 
compression and decompression of data for its regeneration, and it is mostly used to reconstruct 
images.  Their applications are numerous, from image noise removal to out-of-range data 
detection, with applications to the safety control of nuclear power plants or air transport, where 
there are countless variables, and it is difficult to monitor all of them at the same time to detect a 
mistake.  
 
The basic architecture of the AE is made up of three elements: an encoder that reduces the 
dimensionality of the data by increasing its depth, a bottleneck, where all the information is 
compressed into a vector of 𝑙 terms, and a decoder, which increases and decrypts the latent 
vector to generate an image or data. The basic AE is made by means of convolutional layers [10].  
 
For our problem, we have also used the Variational Autoencoder (VAE), which differs from the 
AE in its latent space and loss function. In the VAE, before logging the flattened data at the 
bottleneck, they are standardized into a normal Gaussian distribution. In this way, the VAE 
manages to create a more consistent and better distributed latent space. Figure 3 shows the 
classical structure of a VAE where the input and the output are images. 
 
Finally, we have also used a third autoencoder that implements residual connections (Residual 
Autoencoder, ResAE), which provides a faster and more complete learning compared to the AE 
that uses only convolutional layers. The residual connections are created using the identity block, 
which does not perform any transformation and just maps the identity function, and the 
convolutional block, which maps the identity function and applies a convolution. 
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Fig 3. Structure of a Variational Autoencoder. [11] 
 

 
2.1 Input to the Neural Network 
 
One of the inputs to the neural network is the magnitude and phase of the STFT of a measured 
RIR. The STFT is meant to obtain accurate information in time, thus its window length is quite 
short (4ms). The specific parameters for a sampling frequency of 𝑓𝑠 = 16000 Hz are:  
 

• Size of the FFT (N): 256  

• Window length: 64  

• Hop length: 32 (overlap of 50%) 

The STFT is a matrix of complex values of dimension [𝑁 × 𝑁𝑓𝑟𝑎𝑚𝑒𝑠]. Therefore, their magnitude 

and phase will be processed separately by the neural network. Moreover, decimal logarithm is 
applied to the STFT magnitude to obtain its power in decibels. These calculations are performed 
to attain more comprehensive data, since the simple transform results in reduced and not very 
extensive values in the data matrix. Normalization is performed using the minimum maximum 
scaling method, resulting in a normalization between 0 and 1. Figure 4 shows the magnitude (top) 
and the phase (bottom) of the STFT of a RIR. 
 

 
Fig. 4. Magnitude (top) and pase (bottom) of the STFT of a RIR. 
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The other input to the neural network is formed by two information vectors. We called information 
vector to a vector containing information about the locations of the source and the listener inside 
the room, together with the dimensions of the room and its reverberation time, similar to the input 
proposed in Fast-RIR [7]. Therefore, the information vector is formed by 10 parameters:  
 

[lpx, lpy, lpz, spx, spy, spz, rdx, rdy, rdz, t60], 
 
where lp{x,y,z} are the Cartesian coordinates of the listener and sp{x,y,z} are the Cartesian 
coordinates of the source, whereas rd{x,y,z} are the dimensions of the room and t60 is the 
reverberation time in seconds. All the length measurements are expressed in meters. Finally, the 
other input to the network consists of the information vector of the measured RIR (whose STFT 
feeds the network as well), stacked with the information vector of the RIR to be inferred. 
 
2.2 Deep Learning Model 
 
The model consists of 4 convolutional layers in the encoder and another 4 in the decoder, with 
the number of filters indicated in a list of convolution filters, kernels, and strides respectively, a 
latent space 𝑍  and 𝑙 activation neurons for the latent vector. Each convolution layer is then 
applied a BatchNormalization layer and a ReLU activation, whereas in the decoder it is used a 
LeakyReLU activation. Figure 5 shows the structure of the VAE, where each color represents a 
residual layer. 
 

 

 
Fig. 5. Variational Autoencoder Architecture. Each color means a residual layer. 

 
After applying a layer of 𝑙 neurons to the latent vector and completely flattening the STFT data 
with the Flatten method, they are concatenated before being introduced into the latent space. 
Subsequently, the transposed convolutions with their BN are performed to obtain the output. The 
reconstruction error of the autoencoders is the MSE (4). 
 

    𝑀𝑆𝐸 =  𝐿(𝑦, 𝑦̂) =
1

𝑁
∑ (𝑦 − 𝑦̂𝑖)2𝑁

𝑖=0           (4) 

 
However, in the case of VAE an additional term, the Kullback-Leibler divergence, or KL loss, is 
also taken into account in the loss function [12].  This information-theory equation quantifies the 
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proximity of two probability distributions. To obtain the loss function, the equation is simplified by 
comparing the probability distribution with a Gaussian one. The equation would then look like:  
 

           𝐿𝐾𝐿 = −0.5 ∑ (1 + log (𝜎𝑍,𝑖)  − 𝜇𝑍,𝑖
2 −  𝜎𝑍,𝑖

2 )𝑁
𝑖=1           (5) 

 
2.3 Database  
 
The availability of databases containing enough RIRs measured to train a model is scarce [13]. 
Therefore, in this work we use the Fast-RIR tool [7] to simulate a rectangular room with different 
listening positions and sound sources, resulting in 360,000 RIRs. The parameters of the room are 
as follows:  
 

• Room size [9 x 6 x 2.5] [m]  

• T60 = 0.2 [s]  

• Distance between positions 0.3 [m]  

 
With these parameters, the impulse responses are generated, which are after preprocessed and 
associated with their information vector.  
 
2.4 Training  
 

The chosen learning rate is 10−5, a higher learning rate resulted in models learning too fast and 

creating incorrect patterns of the data provided. For training, an Early Stopping criterium has been 
used, checking the losses in the validation set with a patience of 40 epochs. A batch size of 512 
and a maximum of 1000 training epochs have been set. The loss function used is the MSE (4) 
algorithm with the addition of the KL loss (5), and the training optimizer used is the Adam gradient 
optimizer. For the training process, “InverseTimeDecay” is used to exponentially reduce the 
learning rate every 100 epochs. 
 
Generation: As said before, the features that feed the model are the magnitude and phase of the 
STFT and the two information vectors. However, the output of the model should be only the 
magnitude and phase of the STFT of the inferred (new) RIR. Once the new STFT has been 
generated by the DL model, it is necessary to de-normalize it. It is also necessary to undo the 
operations of the STFT and calculate its inverse STFT to obtain the waveform in time. Lastly, the 
audio wave is saved in .WAV format and its STFT is saved in two .NPY files, one for its magnitude 
in dB and the other for its phase. 
 
 
3. RESULTS 
 
3.1. Training Loss Results  
 
We have compared three autoencoders: the basic autoencoder (AE), the variational autoencoder 
(VAE), and the residual autoencoder (ResAE). Table I shows the loss for each model for the 
training and validation data, as well as the number of epochs, the training time and the number 
of parameters of each model. It can be concluded from the training data that neither a long training 
time nor an exceeding number of parameters improved the models’ efficiency. Furthermore, the 
models converged similarly, except for the Autoencoder which trained for too long due to technical 
difficulties. Comparing results and parameters of the models it can be observed that the 
Variational Autoencoder outperforms the other two models, and it will be selected to be improved 
in future advances. Although a new training with a reduced set of parameters for the Residual 
Autoencoder will be performed before choosing the Variational Autoencoder. 
 
It can be noted from Table I that the results from the Autoencoder training obtained a lower 
validation loss than training loss. This is not an expected result, meaning that the model performed 
better in inputs that have not trained on than the ones that has experienced. For the Variational 
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Autoencoder, it obtained the best results among all models. The Gaussian distribution created a 
uniform latent space and, therefore, it creates more consistent results. It also has the smaller 
number of parameters and a shorter training time. The results obtained by the Residual 
Autoencoder may point out that the selection of the complexity for the model (number of 
parameters) was excessive, and that a lighter model would have performed better.  
 

TABLE 1. LOSS OBTAINED AT TRAINING. 

Model Loss Val-Loss Epochs Time [h] N-params 

AE 15.15·10-4 1.341·10-3 1000 79 3.5·105 

VAE 12.93·10-4 1.443·10-3 111 23 3.2·105 

ResAE 16.25·10-4 2.088·10-3 111 19 6.1·105 

 
3.2 Generation Loss Results  
 
Figure 6 shows the waveform of the real (top) and generated (bottom) waveform of the desired 
RIR. It can be seen how the Variational Autoencoder obtains a good estimation of the new RIR 
regarding the arrival of the direct sound at the right time. However, the early reflections are over-
factorized. The STFTs of the same RIRs are shown in Figure 7, where the magnitude and phase 
of the STFT of the real and generated RIRs are displayed at the top and the bottom of the figure 
respectively. It can also be noted the effect of the over estimation of the early reflections in the 
magnitude plots. Regarding the phase plots, it can be noted some disturbance in the first 
miliseconds of the RIR and along the late reverberation.  
 

 
Fig. 6. Comparison between generated and simulated RIR. 
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Fig. 7. Comparison between generated and simulated STFTs. 

 
 
Table 2 shows the mean square error (MSE) of the three models for the whole RIR, as well as 
considering only their first 50ms, whereas Table 3 shows the MSE of the STFT for both magnitude 
and phase. The test set is formed by 21 generated RIRs. It can be noted from both tables that the 
MSE is very similar for the AE and the VAE, being much lower than that of the ResAE. Regarding 
the MSE of the RIR for the first 50ms, it is higher than for the full RIR, which is comprehensible 
result since most of their energy is concentrated within the first 50ms. However, the performance 
of the AE and VAE are always better than that of the ResAE, presenting an MSE seven times 
higher compared to the values obtained for the AE and the VAE, and for both domains, time and 
frequency. 
 

TABLE 2. RESULTS OF RIR MEAN SQUARE ERROR 

Model  MSE  MSE (50ms) 

AE  1.073 · 10-3 5.285 · 10-3 

VAE  1.084 · 10-3 5.329· 10-3 

ResAE  7.867 · 10-3 35.984 · 10-3 

 

TABLE 3. RESULTS OF STFT MEAN SQUARE ERROR 

Model MSE Log Mag MSE Phase 

AE 4.030 · 10-3 33.425 · 10-3 

VAE 4.516 · 10-3 34.349· 10-3 

ResAE 26.639 · 10-3 71.508 · 10-3 

 
Results in Table 3 indicate that most of the MSE achieved by the models comes primarily from 
the reconstruction of the phase. The STFT magnitude can be predicted reasonably well, while the 
STFT phase obtains errors eight times higher than the magnitude.  
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3.3 Model Execution Times 
 
Next, it will be commented the execution times for the generation and postprocessing of the 
different models. Table 4 shows the generation time and the postprocessing time in seconds for 
all the models for the whole test set of 21 RIRs. 
 

TABLE 4. EXECUTION TIME FOR A BATCH OF 21 RIR 

Model Generation time (s) Post Process time (s) 

AE 1.407 0.307 

VAE 2.149 0.049 

ResAE 2.671 0.050 

 

The Autoencoder model took the less time to generate the RIR, taking 6.7 · 10−2 seconds to 
generate each RIR. The Variational Autoencoder took approximately 0.6 seconds more than the 
AE for the generation time since the latent space is encoded in a Gaussian distribution and needs 
some additional computation. For the Residual Autoencoder, as the number of parameters is 
doubled, it takes 1.2 seconds more than the AE. The post processing times indicate that the first 
postprocessing takes slightly more time, but it could be overlapped with the generation process. 
 
 
4. CONCLUSIONS 
 
The problem of inferring a new RIR from a measured RIR in a seam room has been studied. 
Three neural networks based on the Autoencoder structure have been implemented to generate 
the new RIR, whose input was the same and consisted in the STFT of the measured RIR together 
with two information vectors, one referred to the measured RIR position, and the other referred 
to the new RIR’s. Apart from this information, the vectors included the dimensions of the room 
and its reverberation time, in case the resulting model would be used for a different room. The 
results obtained satisfied the need for the problem to solve, although the underperformance of 
the Residual Autoencoder leaves the incognita if a better choice of hyperparameters and weight 
model would lead to better results. It can be observed how the Variational Autoencoder presents 
the best performance regarding the losses, but the MSE is similar to that of the Autoencoder for 
the test set. Nevertheless, the VAE obtains realistic Room Impulse Responses, especially 
considering the arrival time of the direct path. 
 
 
5. FUTURE WORK 
 
The future work, which is aimed to improve the system, includes the implementation of a loss 
function adapted to the STFT as in [14], or, alternatively, to separately train two models, one for 
the magnitude and one for the phase. Other possibility is to trim the RIR such that the direct path 
and early reflections are trained with a model and the late reverberation with a different one, due 
to their different statistical properties. Last but not least, other DL models could be used such as 
adversary networks or transformers. 
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