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ABSTRACT 

In some mallet percussion instruments, such as vibraphones and marimbas, tubular acoustic 
resonators are placed beneath the tuned bars to enhance sound radiation. Although widely used 
in commercial instruments, the vibroacoustic interaction between the tuned bars and their 
resonators has not been studied extensively, and previous modelling attempts regularly neglect 
important aspects of the coupling dynamics. This work develops on a previous study, where a 
minimal model for the coupling between a single bar mode and a single resonator mode was 
presented. Here, the same modelling principles are applied to a system composed of a 1-D beam 
and a 1-D cylindrical acoustic resonator, leading to a lumped-parameter model including the 
coupling dynamics between several bar modes and several resonator acoustic modes. The 
dynamics of the lumped-parameter model are explored through time-domain simulations and 
eigenvalue analysis, reveling a number of interesting (and rarely mentioned) features, for example: 
the role of the ratio of damping coefficients between a bar mode and a resonator mode, the 

Additionally, experimental results are presented to validate the model and demonstrate its 
capacity to emulate real instruments, both qualitative and quantitatively. 

 

RESUMEN 

En algunos instrumentos de percusión de mazo, como vibráfonos y marimbas, se colocan 
resonadores acústicos debajo de las barras afinadas para mejorar la radiación acústica. Aunque 
se utiliza mucho en instrumentos comerciales, la interacción vibro-acústica entre las barras 
afinadas y sus resonadores no se ha estudiado de forma exhaustiva, y los intentos de modelado 
anteriores suelen descuidar aspectos importantes de la dinámica de acoplamiento. Este trabajo 
se basa en un estudio previo, donde se presentó un modelo mínimo para el acoplamiento entre 
un único modo de barra y un único modo de resonador. Aquí, los mismos principios de modelado 
se aplican a un sistema compuesto por una barra 1-D y un resonador acústico cilíndrico, llevando 
a un modelo simplificado que incluye la dinámica de acoplamiento entre varios modos de barra 
y varios modos acústicos de resonador. La dinámica del modelo se explora a través de 
simulaciones en el dominio temporal y análisis de valores propios, revelando una serie de 
características interesantes, por ejemplo: el papel de la relación de coeficientes de 
amortiguamiento entre un modo de barra y un modo de resonador, la colocación del resonador 
a longo de la barra, así como su proximidad a la barra. Además, se presentan resultados 
experimentales para validar el modelo y demostrar su capacidad para emular instrumentos reales, 
tanto cualitativa como cuantitativamente. 
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1. INTRODUCTION

Mallet percussion instruments (e.g. marimba, vibraphone, xylophone, etc.) are made of various
tuned bars that vibrate and radiate sound at their natural frequencies of vibration. The tuning 
process involves cutting on the underside of the bars such that their frequencies become 
harmonically aligned (multiple integers of the fundamental frequency). Recent years have seen a 
number of studies [1] [2] [3] [4] using optimization methods to find undercut geometries that lead 
to the tuning of multiple bar modes to a set of predefined targets. Moreover, some studies 
considered the concomitant tuning of non-vertical-bending modes (torsional, lateral) with vertical-
bending modes [5] [6]. 

In some instruments, resonator pipes are used to enhance sound radiation. Early experimental 
reports by Bork [7] have demonstrated that when the fundamental frequency of the acoustic 
resonator is aligned with that of a bar mode, the two (mechano-acoustic) elements experience a 
vibro-acoustic coupling, which generally leads to an increase of sound radiation. On the other 
hand, the increased sound radiation is often accompanied by a proportional decrease of the bar 
decay time. 

Despite the advances on the design optimization of the individual elements (bars and resonators), 
the nature of the vibro-acoustic coupling between the two has not been studied extensively. To 
the authors knowledge, the only work dealing with the two-way coupling is that recently published 
by Rucz et al. [8]. Here, the authors use 3-D finite element models to describe the vibroacoustic 
coupling between cylindrical resonators and bars and, in general, their numerical results are in 
agreement with experiments, expressing both the increase in sound radiation and the decrease 
of bar decay time. However, approaches using 3-D models entail large computational costs and 
are less practical for parametric studies. In this context, simplified modelling approaches may be 

.

In recent work by the authors [9] [10], a simplified model for the vibro-acoustic interaction was 
developed. To this end, a single bar mode was represented by a disk-shaped damped oscillator, 
and the acoustics of a cylindrical resonator (of the same radius) were described in a modal 
framework. The vibro-acoustic transfer function between the two elements was calculated via a 
2-D axisymmetric finite element model, whose numerical results were then fitted to dimensionless 
analytical expressions. Finally, the interaction between a single bar mode and a single resonator 
mode was reduced to a system of two coupled oscillators. Despite its simplicity, the model was 
able to reproduce the dynamical behavior commonly observed in experimental reports. 

In this work we develop on the previous modelling efforts, now including the interaction between 
multiple bar and resonator modes. Subsequently, several experimental investigations are carried 
out to validate various aspects of the proposed model, and assess its capacity to describe the 
dynamics of real instruments, both qualitatively and quantitatively. 

2. MODEL DESCRIPTION

We consider the coupling dynamics between a free-free vibrating beam and a cylindrical acoustic 
waveguide, as illustrated in Figure 1. The resonator is closed at the bottom and open (unflanged) 
at the top. The beam has length and its width is equivalent to the resonator diameter ( ).

The resonator is located at a distance along the beam length and its open termination is 

located at a distance below the bar. 

2.1 Dynamics of the uncoupled bar 

The linear dynamics of a beam with free-free boundary conditions are described in a modal 
framework, that is

(1)

where , , and are the modal masses, damping ratios, natural frequencies and 

participation factors of the beam modes, respectively, and the beam vertical displacement 

is given by the sum of the modal contributions 
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(2)

where are the beam mode shapes. 

Figure 1 Illustrative diagram of the considered model.

2.2 Acoustics of the uncoupled resonator

The acoustic wave equation in terms of particle displacement is given by the following 

partial differential equation

(3)

where is the fluid density at rest, is the speed of sound and is the cross-sectional area of 

the pipe. At the closed end , there is no displacement and the boundary condition is

, while at the open end , we impose a radiation impedance such that the 

pressure and fluid velocity obey the following relation, in the Laplace domain, 

(4)

where is the complex Laplace variable; and are associated to the acoustic resistance 

and reactance, respectively. In terms of particle displacement, the boundary condition at the open-
end is written as

(5)

Replacing the two boundary conditions into the wave equation (3)
characteristic equation 

(6)

whose solutions are the complex eigenvalues of the uncoupled resonator. Solutions can be 

found numerically to obtain the real and imaginary parts of the eigenvalues , from 

which the undamped natural frequencies and damping ratios of each acoustic mode 
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can be obtained. Then, we can develop the particle displacement in terms of the (real) 

acoustics modes as

(7)

Substitution of (7) into the wave equation (3) and proceding with the typical Galerkin projection 
leads to a system where, in general, orthogonality does not strikly hold. However, it can be shown 
that for pipes that are not unreasonably wide , the contributions of off-diagonal terms 

are small and the following (orthogonal) approximation is suitable

(8)

where is the length correction term ( ). Finally, using (8), eventually leads to a set 

of (linearly independent) modal equations describing the resonator acoustics

(9)

where the inertial modal coefficients are given by .

2.3 Vibroacoustic interaction

A difficult aspect in modelling the interaction between a vibrating bar and its acoustic resonator is 
associated with the three-dimensional effects of the acoustic radiation that couple the two 
elements. Here, we simplify the geometry of the problem by assuming that only a particular region 
in the beam surface will have a meaningful vibro-acoustic interaction with the resonator. Namely, 
we consider the circular area on the beam that is located directly above the open end of the 
resonator, as illustrated in 

Figure 2.

Figure 2 Illustration of the portion of the beam considered in the vibro-acoustic interaction.

The vibro-acoustic coupling is defined by the interaction between the motion of disk (beam) and 
the acoustics at the open end of the resonator. On this point, we remind the reader of the principle 
of vibro-acoustical reciprocity [11] [12]. In our problem, this principle can be arranged in the form 
of a dimensionless transfer function 

(10)

where is an acoustic volume acceleration induced on the resonator open-end by the 

beam-disk motion and, similarly, is the net force induced on the beam-disk by the 
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acoustic radiation from the open-end of the resonator. In a recent work [9] [10] this transfer 
function was numerically calculated via a 2-D axisymmetric finite element model considering the 
interaction between two parallel circular surfaces of the same radius , for various separation 
distances . It was found that, in the low-frequency range ( ), the transfer function 

can be approximated by a simple constant gain filter, dependent solely on the 

dimensionless distance . The numerical results were fitted to a polynomial function of the 
following form

(11)

considering various orders . A 5th-order polynomial was deemed sufficient for an accurate 
description of the calculate transfer function, leading to the fitted coefficients 

. Notice that, when and when 

, as expected. Finally, with the knowledge of , the force and 

the acoustic excitation can be used as forcing terms in the equations of the beam (1)

and of the resonator (9), respectively. 

2.4 Coupled system

Given the vibro-acoustic transfer function (11), the force load on the beam-disk induced by the
resonator is then given by

(12)

where the auxiliary function (associated with the resonator mode shapes in terms of pressure) is

(13)

Projection unto the beam modal basis will yield the modal forces applied on each 

beam mode which eventually lead to the beam modal equations

(14)

Similarly, the volume acceleration induced on the resonator by the beam-disk motion is given by

(15)

which can be used as a forcing term in the (inhomogeneous) wave equation. Following the 
appropriate Galerkin projection unto the acoustic modal basis, the resonator modal equations are 

(16)

The final coupled system is then described by a series of (mechanical) oscillators inertially 
coupled to (acoustic) oscillators 

(17)

where the modal sub-matrices , , , , and rK , are diagonal and define the modal 

parameters of the beam and resonator, i.e.
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(18)

while the inertial coupling matrix is given by

(19)

2.5 Energy balance

The kinetic and potential modal energies in each beam mode are given by

(20)

Similarly, the acoustic kinetic and potential modal energies in each resonator mode are

(21)

The amount of energy dissipated by each beam mode, via internal losses, is given by

(22)

while the amount of energy dissipated by each resonator mode, through acoustic radiation, is 
given by

(23)

The energy conserved in a given (coupled) modal-pair is given by 

(24)

Additionally, we define , representing the percentage of energy 

in the modal-pair that is dissipated through acoustic radiation by a resonator mode

(25)

where is the total energy in the modal pair. We also define the decay time of the coupled 

modal-pair as

(26)

3. EXPERIMENTAL VALIDATION

To assess the validity of the proposed vibro-acoustic model, an experimental apparatus was set-
up in an anechoic chamber. The aim was to evaluate the behavior of the coupled-system, both 
qualitatively and quantitatively, in terms of the most pertinent design parameters: tuning ratio 

r n , the bar-resonator distance and the resonator placement along the bar length . 



53º CONGRESO ESPAÑOL DE ACÚSTICA 
XII CONGRESO IBÉRICO DE ACÚSTICA

As shown in Figure 3, the set-up was made of a suspended beam placed over a cylindrical pipe
of variable length. The pipe inner radius was , and it was composed of two parts joint

by a threaded junction, which allowed for a precise variation of its overall length 
. The acoustic response of the pipe was measured by an electret 

microphone placed at the bottom end. The used aluminum beam was suspended by elastic 
strings on a tri-pod mount, which allowed the control of the bar-resonator distance . The bar 
length was and its width equal to the tube diameter . The beam was undercut 

(based on [6]) such that its first four vertical-bending modes are tuned in a ratio (1:3:5:7) and its
flat surface was faced down to ensure the distance was constant along the beam length. The 
beam was given an impulsive excitation with a small impact hammer (Brüel & Kjær Type 8203) 
striking at one end , while its motion was measured at the other end using a laser 

vibrometer (Polytech PDV100).

Figure 3 Experimental set-up for the dynamic interaction: (a) schematic description, (b) 
overview and (c) zoom of the suspended bar and resonator open-end.

3.1 Experimental modal identification

Since the aim was to experimentally validate the proposed model, the first step was the modal 
identification of the bar and resonator modes, such that identified modal parameters could be 
used in the model for comparison. The first four vertical-bending modes of the bar and the first 
four resonator acoustics modes were identified, for several tube lengths . The identified modal 

parameters are shown in Table 1. The parameters of the resonator are shown in ranges, 
corresponding to the variations in resonator length. Additionally, Figure 4 shows the profile of the 
undercut bar as well as the first four mode shapes n x . The considered modal masses 

,n rm m and mode shapes were taken from models as these parameters are not 

particularly easy to measure experimentally and small quantitative differences compared to the 
modelled values are not expected to change results significantly.
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Table 1 Modal parameters for the first four bar and resonator modes.

Bar Resonator

(Hz)
(measured)

(%)
(measured)

(kg)
(modelled)

(Hz)
(measured)

(%)
(measured)

(g)
(modelled)

1 168.7 0.0426 0.0450 173.7 ± 12.5 0.73 ± 0.04 0.61± 0.04
2 505.1 0.0243 0.0307 507.6 ± 32.8 0.77 ± 0.04 0.61± 0.04
3 847.7 0.0215 0.0241 845.1 ± 56.8 0.83 ± 0.06 0.61± 0.04
4 1186.6 0.0096 0.0372 1205.9 ± 78.6 0.94 ± 0.08 0.61± 0.04

Figure 4 Profile of the undercut bar (top) and considered modes shapes .

3.2 Effect of tuning ratio and beam-resonator distance

In the first set of measurements, the aim was to measure the decay time 

of different modal pairs as a function of the tuning ratio . The resonator was 

maintained centered with the bar , and measurements were taken for a sweep of 

discrete tube lengths such that . Since the bar frequencies are tuned to a ratio 

close to that of the resonator (1:3:5:7), this procedure allowed for the measurement of all four 
modal-pair couplings at the same time. Additionally, in order to quantitatively validate the 
proposed vibro-acoustic transfer function , this procedure was repeated for three bar-

resonator distances . Results for the coupling in first and third modal pairs 

are shown in Figure 5. Note that with , the coupling of the second and fourth bar modes 

is bound to be weak since . For these modal pairs, results showed no 

significant variation of the time decay compared to the uncoupled case, and resonator 

dissipation was negligible ( , for all ). Results in Figure 5 demonstrate that, 

qualitatively, the model is able to predict the observed behavior, with the typical decrease in decay 
time being accompanied by a proportional increase in resonator damping. Moreover, the 
decrease in coupling strength when the bar is placed further away (larger d a ) is also captured 

by the model. However, quantitatively, the model seems to underestimate the coupling strength 
in all cases: the decrease in time decays and increase in resonator damping is always 

larger in the experimental results. This difference can potentially be attributed to the fact that our 
vibro-acoustic coupling is based on the disk geometric simplification, whereby in reality, other 
regions of the beam will also couple with the resonator acoustics. 

3.3 Effect of resonator placement

In this second series of experiments, the distance was fixed at , and the resonator length 

was fixed such that , for each modal-pair. Then, a series of measurements were 

performed for a sweep of discrete resonator placements in the region . Due to bar 

symmetry, only half the domain was mapped. Results for the decay time and resonator 

dissipation are shown in Figure 6. In general, modelling results agree well with the observed 

behavior, where we see a significant decrease in the coupling strength when the resonator is 



53º CONGRESO ESPAÑOL DE ACÚSTICA 
XII CONGRESO IBÉRICO DE ACÚSTICA

placed below a nodal line of the bar mode (see Figure 4). We also note a slight 

difference in the shapes of the and curves, likely due to small differences between the 

considered and actual mode shapes of the beam. Finally, we notice large differences when the 
resonator is placed near the tip of the bar , in all cases. This deviation is expected 

since, in these scenarios, the bar does not cover the resonator termination completely (for 
example, when , the bar only covers half the resonator open-end). Here, the disk-

assumption naturally leads to an overestimation of the coupling strength. 

Figure 5 Variation of the decay time and resonator dissipation as a function 

of the tuning ratio , for three different bar-resonator distances . 

Figure 6 Variation of the decay time 60, ( )nrT s and resonator dissipation as a function 

of the resonator placement , for all four modal-pairs. The distance was fixed at and 

the tuning ratio . The solid lines and circles show the modelling and experimental 

results, respectively. The vertical dotted lines indicate the location of the nodal points in the bar 
modes.



 

53º CONGRESO ESPAÑOL DE ACÚSTICA  
XII CONGRESO IBÉRICO DE ACÚSTICA 

4. CONCLUSIONS 

In this paper we have developed a vibro-acoustic model describing the coupling dynamics 
between a vibrating beam and an acoustic resonator, as found in mallet percussion instruments 
like the marimba or the vibraphone. The bar is modelled as a free-free beam and the resonator 
as a cylindrical pipe, both in a modal framework. The vibro-acoustic coupling of the two elements 
was pursued assuming that only the circular region on the bar just above the resonator will interact 
with the resonator. The vibro-acoustic transfer function between two parallel disks was used, as 
developed and validated in a previous work [10]. The proposed formulation led to a simple multi-
modal model describing a set of mechanical oscillators (beam modes) inertially coupled to a set 
of acoustic oscillators (resonator modes).  

Experiments were carried out to validate various aspects of the proposed model: (1) the tuning 
ratio , (2) bar-resonator distance  and (3) resonator placement along the bar length . 

Despite some minor quantitative deviations, the vibro-acoustic model was positively validated by 
experiments, showing the often-encountered compromise between a decrease of decay time and 
an increase of acoustic radiation. Additionally, experiments showed that the coupling strength will 
be severely influence by the bar mode shape at the location where the resonator is placed , 

i.e. a resonator will not couple with a particular bar mode if it placed directly under a nodal line.  

The simplicity of the developed lumped-parameter formulation allows for an intuitive 
understanding of the physical phenomena occurring in real instruments and underlines the main 
parameters affecting its dynamics. This can be valuable to the design and optimization of modern 
instruments, especially in the advent of instruments where multiple bar modes are tuned to 
multiple resonator modes, leading to increased sound radiation at several frequencies. 
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