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ABSTRACT.  
The Lattice Boltzmann Method (LBM) has shown robustness in simulating wave propagation. 
However, this method suffers from issues of accuracy and computational efficiency related to the 
use of uniform meshes. Therefore, two MFree (meshfree) local weak-form cumulant LB methods 
are suggested to overcome these shortcomings: the local radial point interpolation cumulant LBM 
(LRPIC-LBM) and the meshless local Petrov-Galerkin cumulant LBM (MLPGC-LBM). The 
collision step of LBM is modeled by the cumulant method, while the streaming step is, first, 
discretized in time using the Lax-Wendroff scheme, then, the space discretization is done by 
means of the local radial point interpolation method (RPIM) and the meshless local Petrov-
Galerkin method (MLPG) -for LRPICLBM and MLPGC-LBM, respectively. To substantiate the 
accuracy of these methods the propagation of planar acoustic waves is studied, comparing the 
results from the LBM simulations with their respective analytical solutions. The comparisons 
illustrate that both MFree local weak-form cumulant LB methods replicate the analytical results, 
and even improve those of the LBM. Therefore, both new methods offer an interesting alternative 
to conventional LBM methods, with the relevant feature that they are not penalized by the 
parametric dependence of the number of points per wavelength. 
 
 
RESUMEN.  
El método Lattice Boltzmann (LBM) ha demostrado su solidez en la simulación de la propagación 
de ondas. Sin embargo, este método adolece de problemas de precisión y eficiencia 
computacional relacionados con el uso de mallas uniformes. Por lo tanto, se sugieren dos 
métodos LBM-MFree de forma local débil para superar estas deficiencias: el LBM de 
interpolación local de puntos radiales (LRPIC-LBM) y el LBM cumulante de Petrov-Galerkin local 
sin malla (MLPGC-LBM). El paso de colisión del LBM se modela mediante el método cumulante, 
mientras que el paso de propagación es primero discretizado en el tiempo utilizando el esquema 
de Lax-Wendroff, y luego la discretización en el espacio se realiza mediante el método local de 
interpolación de puntos radiales (RPIM) y el método local de Petrov-Galerkin sin malla  (MLPG) 
-para el LRPICLBM y el MLPGC-LBM, respectivamente. Para corroborar la precisión de estos 
métodos se estudia la propagación de ondas acústicas planas comparando los resultados de las 
simulacions LBM con sus respectivas soluciones analíticas. Las comparaciones ilustran que 
ambos métodos LB-MFree replican los resultados analíticos, e incluso mejoran los del LBM 
convencional. Por tanto, ambos nuevos métodos ofrecen una interesante alternativa a los 
métodos LBM convencionales, con la relevante característica de que no se ven penalizados por 
la dependencia paramétrica del número de puntos por longitud de onda. 
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1. INTRODUCCIÓN  
The sound propagation as one of the crucial issues [1], not only affects many industries by limiting 
engine operation and polluting the environment, but also makes engineering modeling 
complicated, particularly for the need of enormous CPU-time and robustness of algorithms. 
Projects and research centers have been launched that focus on suitable computational 
aeroacoustic (CAA) implementations [2]. For these purposes, various schemes have been 
concocted in computational aeroacoustics. Tam [3] and Wells et al. [4] suggested compact and 
non-compact optimized schemes like the High-order Compact Difference scheme and the 
Dispersion-relation-preserving (DRP) scheme. Hybrid methods were also adopted to slash the 
huge cost of CAA simulations [5].  
 
However, factors like the small ratio between sound pressure and pressure variation and the time-
consuming nature of the traditional methods make direct simulation of aerostatics challenging [6]. 
Thus, the LBM have been devised to simulate sound wave propagation due to their relative 
simplicity of implementation and parallelization. Dellar et al. [7] reached acceptable results for 
sound wave propagation using LBM.  Bres et al. [8] and Gorakifard et al. [9] considered the 
dissipation and dispersion of acoustic waves using the BGK and the cumulant LBM, respectively. 
A regularized method for the BGK-LBM [10] has been developed to model wave propagation. 
 
In general, the LBM is constrained by lattice uniformity so it suffers from accuracy and efficiency 
problems in non-uniform mesh simulations [11]. Although grid refinement can improve accuracy, 
it favors the appearance of additional perturbations in acoustics [12]. To overcome these 
weaknesses, non-uniform LB methods have been developed such as: interpolation-
supplemented LBM [13], combinations of LBM with finite difference/ volume/ element methods 
[14], and Taylor-series expansion and least-squares-based lattice Boltzmann methods [15]. 
These methods suffer from the drawbacks caused by meshes, such as mesh generation costs, 
low accuracy of calculated stresses in fluid-structure interaction simulations [16], and simulation 
failure for singular physical phenomena. Thus, Mesh-Free methods were presented to encounter 
above problems. These methods generate a system of algebraic equations for the nodes, without 
explicit linkage among them to interpolate or approximate the unknown variables. 
 
MFree methods have developed along with older methods like the collocation method [18] and 
the vortex method [19]. Among the so-called weak-form MFree methods, different procedures   
have aroused the interest of researchers in computational mechanics. These methods include 
the local radial point interpolation method (LRPIM) [20] and the meshless local Petrov-Galerkin 
method (MLPG) [21].  Mfree methods in LBM have also been used with success in fluid flow 
simulations [22]. However, such idea is still at an early stage of development and must be 
improved. As an illustration, studies using the standard Bhatnagar-Gross-Krook (BGK) scheme 
in the collision part, suffer from instability at low viscosities, and violation of the principle of 
Galilean invariance [23]. Thus, replacing the BGK scheme by the more stable cumulant LBM [24, 
25] provides premium advantages. For this purpose, the local radial point interpolation cumulant 
lattice Boltzmann method (LRPIC-LBM) [26] has been developed. Moreover, the efficiency of 
LRPIC-LBM increases by using MLPG in the Mfree part, since the moving least squares (MLS) 
shape functions used in MLPG need less computational resources than the RPIM shape functions 
used in LRPIM. This idea has resulted in the meshless local Petrov-Galerkin cumulant LB method 
(MLPGC-LBM) [27]. The main aim of this study is to assess the ability of two MFree local weak-
form cumulant LB methods: the local radial point interpolation cumulant LBM (LRPIC-LBM) and 
the meshless local Petrov-Galerkin cumulant LBM (MLPGC-LBM) to simulate aeroacoustics 
problems.  
 
 
2. THE LATTICE BOLTZMANN METHOD  
The lattice Boltzmann method (LBM) originated from the kinetic theory of gases [28]. The lattice 
Boltzmann equation without an external force is  

   , ,i i i if x c t t t f x t                                      (1) 

where x and ic are vectors of the position and lattice speed, if  is the particle distribution 

function and i is the collision operator. 
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In general, the LBM is comprised of collision and streaming steps. In MFree local weak-form 
cumulant LB methods, the cumulant method is used for the collision part. For the streaming part, 
we will use the local radial point interpolation method (RPIM) in the case of the LRPIC-LBM, and 
the meshless local Petrov-Galerkin method for the MLPG-CLBM.  
 
 
2.1. Collision Step 
The cumulant LBM has been suggested to solve the Boltzmann equation [29]. It can improve the 
cascade LBM [30]. The central moments can efficiently be described by the cumulants of a 
distribution function. The cumulants are calculated as 

         
0

ln ,m n

m n

m n
c M
  

 
  
 

                        (2) 

where M is the moment generating function and ,  are the normalized wave numbers. The 

cumulants relax with individual relaxation rates [31], 

  *
m n m n m n m n m n

eqc c c c
         

                            (3) 

where ,  are the equilibrium state cumulants [32].  

 
 
2.2. Streaming Step 
In general, to model the streaming part, a pure advection equation is solved by a Lagrangian 
approach within uniform structured meshes. By shifting to the Eulerian perspective, it is possible 
to overcome uniform structured meshe problems. The pure advection equation is 

  , 0i i
i

f f
c

t x


 
 

 
                                                (4) 

 
Equation (4) is discretized based on a semi-discrete formulation. Therefore, the Lax–Wendroff 
scheme, for time, and the local radial point interpolation method (RPIM) and the meshless local 
Petrov-Galerkin method (MLPG), for space discretization are separately used.  
 
 
2.2.1. Mfree shape function construction - Radial point interpolation shape functions 
Radial point interpolation method (RPIM) shape functions were suggested to overcome the 
singularity issues. The RPIM interpolation augmented with polynomials is 

                 
1 1

,
n m

h T T
i i j j

i j

f t R a t p b t a t t
 

    x x x R x p x b       (5) 

where  iR x  is a radial basis function (RBF), and  jp x  is monomial in the coordinate space  

and        1 2, :T T
nx x y R R R    R x x x . Parameters n and m are the number of 

RBFs and polynomial basis functions. Variables ia and jb are time dependent unknown 

coefficients. Moreover, the independent variable in RBF  iR x is the distance between the point 

of interest x and a node at ix . 

 
Using some specific constraint equations, the approximation function can be calculated  

         
1

,
n

h
i i

i

f t f t t


 x x Φ x F                                   (6) 

where F  is a vector containing the nodal values of the distribution function and Φ  is a vector 

containing the first n  components of the 1T T    Φ R p G  vector 
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2.2.2. Mfree shape function construction - Moving least squares shape functions 
In the moving least squares (MLS) approximation, the distribution function is approximated by 

           
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where m ,  ip x  and  ,ia x t  are the number of basis functions, the basis functions, and their 

corresponding coefficients, respectively. The coefficient a is calculated by minimizing the 
difference between the local approximation and the function which yields 

       ,t tA x a x B x F                                           (9) 

where 
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estimating  ,x ta  from equation (9), and substituting it into equation (8), yields 

         
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where        1T T Φ x p x A x B x and the shape function i  for the i-th node is 

     1T
i i
 x p x A B . 

 
 
2.2.3. Semi-Discrete Formulation - Time discretization 
Starting from the Taylor series expansion of the particle distributions and surrogating the time 
derivatives with the spatial derivatives up to second order, the time discretization of equation (4) 
based on the Lax-Wendroff scheme is 

22
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2.2.4. Semi-Discrete Formulation - Space discretization 
Two MFree local weak-form methods, the local radial point interpolation method (LRPIM), and 
the meshless local Petrov-Galerkin (MLPG) method are proposed to avert global background 
cells for either function approximation or integration. In these methods, the numerical integration 
is carried out within the local domain consisting of a set of distributed nodes. The LRPIM and 
MLPG are based on the RPIM and the MLS shape functions, respectively, where LRPIM benefits 
from the delta function property. However, the MLS improves the efficiency of the scheme beyond 

that of the LRPM. The weighted residual statement of equation (12) on the local domain I of 

point I bounded by I  is  

22
1

, ,2
I I I I

n n
n n i i

I i I i I i I i

f ft
V f d V f d t V c d V c d

x x x 
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

   

 
    

           (13) 

where IV is the local weight function of node I used for the cubic spline function. Using integration 

by parts and substitution of the approximate solution (6) and (11) into equation (13) plus solving 
the global equation system separately for each direction yields 

 1n n
i i if f  M M K                                                   (14) 

where if , M andK are the particle distribution vector, the global mass matrix, and stiffness 

matrix, respectively. 
 
 
3. RESULTS AND DISCUSSION 
Aeroacoustics has recently adopted the LBM due to reduced computational costs. For a standard 
aeroacoustic analysis, properties of planar acoustic waves will be studied using two MFree local 
weak-form cumulant LB methods. For this purpose, the temporal decay of a standing plane wave 
in a periodic domain is considered for regular (default) and irregular nodal distributions (shown in 
Figures 1a and 1b). The base units are in the LB system. The assumptions for this set-up are 
those of reference (33) for ease of comparison. The results of the temporal analysis will be 

presented as a function of the number of points per wavelength /ppwN x  .  

 

 
(A) Regular nodes. 

 
(B) Irregular nodes. 

Figura 1 – Nodal arrangement for the propagation of planar acoustic waves. 
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The relative numerical error of the phase speed for the cumulant LBM is depicted as a function 
of the non-dimensional wave-number in Figure 2. It shows that the deviations from the theoretical 
values are small, for a resolution with more than 12 points per wavelength; for example, at 12 
points per wavelength these deviations are about 0.77% in the phase speed. Furthermore and as 
in reference [9], a reduction in viscosity does not have effects on the phase speed, which allows 
us to conclude that the results are only a function of Nppw (number of points per wavelength) and 
are independent of viscosity in the range of interest. However, reducing the resolution increases 
the errors, and it would be desirable if the results were independent of the number of points per 

wavelength. Figure 3 shows the acoustic pressure time history for 2 21.0 10 /x t         with 

Nppw=12. The LRPIC-LBM exhibits very good agreement with the analytical acoustic pressure.  
 

Figura 2 – Relative numerical error of the 
phase speed for the cumulant LBM as a 
function of the non-dimensional wave-

number. 

Figura 3 – Acoustic pressure vs. time for 
21.0 10   and Nppw=12. 

 

The acoustic pressure time history for a viscosity 100 times smaller 4 21.0 10 /x t         

with Nppw=12 is shown in Figure 4. It presents the comparison between the analytical solution, the 
cumulant LBM and the LRPIC-LBM numerical solutions at low viscosities. The typical instability 
seen in the BGK LBM at low viscosities is avoided by using the cumulant LBM, with phase speed 
errors of less than 1 percent, with adequate resolution. The LRPIC-LBM exhibited good 
performance, closely following the theoretical result. Based on figure 2, the error for Nppw=4 is 
more than 7% for the cumulant LBM. However for the LRPIC-LBM, the acoustic pressure time 

history for Nppw=4 and 2 21.0 10 /x t         presented in Figure 5 reveals that the deviation 

is less than 2%, with a the time step value of Dt = 0.25. The time step size has effects on the 
accuracy and stability of the solution. To reduce errors, the time step can be reduced. 
 

Figura 4 – Acoustic pressure vs. time for 
41.0 10   and Nppw=12.   

Figura 5 – Acoustic pressure vs. time for 
21.0 10   and Nppw=4 with Dt=0.25.  

 



 
 

53º CONGRESO ESPAÑOL DE ACÚSTICA  
XII CONGRESO IBÉRICO DE ACÚSTICA 

 

Figure 6 illustrates the acoustic pressure time history for 2 21.0 10 /x t         with Nppw=4 

and Dt = 0.1. The LRPIC-LBM replicates the analytical results with insignificant errors. Figure 7 
repeats the previous comparison for the analytical solution, the meshless local Petrov–Galerkin 
cumulant lattice Boltzmann method (MLPGC-LBM) with linear and quadric basis functions for the 
expansion of the distribution functions (section 2.2.2). Although one of the cons of MLPGM is that 
the Kronecker delta condition is not satisfied, and the accuracy of the results is reduced as a 
consequence, MLPGC-LBM with linear basis functions is more successful in predicting theoretical 
results than the cumulant LBM. It shows that increasing the polynomial degree of the basis 
functions, i.e. replacing linear basis functions with quadric ones, leads to an improvement. 
Moreover, one of the advantages of MLPGM over LRPIM is its higher efficiency due to the 
difference in the interpolation procedures (the MLS moving least squares shape functions). For 
example, the average run time for the MLPGC-LBM is less than one third that of the LRPIC-LBM. 
In summary, both methods give similar results, predicting wave motion accurately with no 
dependency on the number of points per wavelength, but with less run time in the case of MLPGC-
LBM. 
 

Figura 6 – Acoustic pressure vs. time for 
21.0 10   and Nppw=4 with Dt=0.1 using 

LRPIC-LBM. 

Figura 7 – Acoustic pressure vs. time for 
21.0 10   and Nppw=4 with Dt=0.1 using 

MLPGC-LBM. 
 

Figura 8 – Acoustic pressure vs. time for 
irregular nodal distributions using LRPIC-

LBM. 

Figura 9 – Acoustic pressure vs. time for 
irregular nodal distributions using MLPGC-

LBM. 
 
In many engineering problems such as those of acoustics, it is necessary to use irregular nodes 
for simulations in complex geometries. The acoustic pressure time history for 

2 21.0 10 /x t         with Nppw=12 for LRPIC-LBM on the irregular nodal distribution of 

Figure 1b is presented in Figure 8. It shows that the local radial point interpolation cumulant lattice 
Boltzmann method (LRPIC-LBM) very closely replicates the analytical acoustic pressure. 
Similarly, Figure 9 presents the acoustic pressure time history for MLPGC-LBM with Nppw=14 
points per wavelength on the same domain and with the same viscosity, determined with linear 
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basis functions and quadric basis functions. It shows that MLPGC-LBM with linear basis functions 
cannot model wave motion accurately, due to the lack of a delta function. However, the results of 
MLPGC-LBM with quadric basis functions dramatically improve and very closely reproduce the 
analytical acoustic pressure. 
 
 
4. CONCLUSIONES 
This study presents the temporal decay of a standing plane wave using two MFree local weak-
form cumulant LB methods: the local radial point interpolation / the meshless local Petrov-Galerkin 
cumulant LBM. The comparison of the results clarified that the acoustic pressure time history for 
all three LB methods has a similar behavior at high enough Nppw. In addition, the decrease of the 
viscosity does not reduce the stability of MFree local weak-form cumulant LB methods due to the 
advantages of the cumulant method. However, the MLPGC-LBM predicts the same acoustic 
pressure time history as the LRPIC-LBM but with shorter run times for low Nppw. Furthermore, to 
yield correct results for the propagation of acoustic waves using MLPGC-LBM with irregular nodal 
distributions, quadric basis functions are needed due to inaccuracies generated by the lack of 
delta function properties in the MLPGM scheme. All in all, the possibility to scatter the 
computational nodes across the domain without additional cost, plus the accuracy and stability 
achieved by Mfree methods and the cumulant LBM, make MFree local weak-form cumulant LB 
methods a good alternative to model aeroacoustics.  
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