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ABSTRACT.  
 
Signal regression models are useful tools for prediction, interpolation and smoothing. Countless 
variables are considered to characterize acoustic signals. However, models with many variables 
may end up in less interpretable solutions and with a high computational load. Thus, variable 
selection studies are central to improving models’ performance. This article analyzes a well-
known database. It employs non-linear soundscape emotion models, such as decision tree 
regression, considering two outputs (soundscape descriptors): arousal and valence. We carried 
out the models’ performance and variable selection analysis. The results show that a reduced 
space of features (soundscape indicators) can provide parsimonious models with competitive 
performance.  
 
 
 
RESUMEN. 
 
Los modelos de regresión son herramientas útiles para predecir, interpolar y suavizar señales. 
Incontables variables se extraen para caracterizar una señal acústica. Sin embargo, los modelos 
con muchas variables pueden generar soluciones menos interpretables y alta carga 
computacional. Así, la selección de variables es relevante para mejorar modelos. Este artículo 
analiza una conocida base de datos. Considera modelado no-lineal de las emociones percibidas 
de paisajes sonoros, árboles de decisión, de dos salidas (descriptores): arousal y valence. Se 
evaluó el rendimiento de los modelos y la selección de variables. Los resultados muestran que 
pocas variables (indicadores) proporcionarían modelos sencillos con métricas competitivas.  
 

 
 
1. INTRODUCTION 
 
Variable selection is a central task in signal processing, statistics, and machine learning. Before 
dealing with variable selection, extracting variables (i.e., features) to characterize signals, is a 
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straightaway process that may lead to uncountable variables describing the original signal. 
Generally, the target in variable selection is to only include the relevant variables that improve the 
model performance. When using many variables, models are likely to show overfitting. Thus, 
variable selection presents some advantages: (a) few features lead to simple models; (b) simple 
models mean low computational load; (c) and so, faster algorithms for real-time applications. 
 
When it comes to the application, soundscapes are becoming one of the most active topics in 
acoustics nowadays. Soundscapes broaden the classical environmental acoustics vision beyond 
the idea of ‘noise. Soundscapes provide a holistic approach including individuals’ perceptions, 
context, and acoustic environments. Soundscapes’ modelling may help forecast human 
responses to different acoustic circumstances with few resources.  
 
Soundscapes-elicited emotions play a relevant role in some applications such as urban planning, 
noise monitoring, sound design in films and digital games [1], or sonification [2]. Thus, 
soundscape emotion recognition (SER) is a relatively new sub-field of research with promising 
benefits. Following Russell´s circumplex affect model, SER can be sufficiently modelled with two 
relevant factors: arousal and valence, which represent the eventfulness and the pleasantness 
ratio of an acoustic environment, respectively [3], [4]. An extensive range of soundscapes 
descriptors (i.e., outputs) and soundscapes indicators (i.e., variables/features) have been 
researched up to now. Non-linear models seem to provide better performance than linear models, 
which are preferred because they are simpler to develop [5]. Most of these studies do not share 
a comparison framework. This paper employs the Emo-soundscapes database (EMO) [6], which 
is being a reference in SER studies recently [2], [7]–[9] . 
 
This work aims to analyze the variables’ importance of a model for SER, which is based on a non-
linear approach such as Decision Tree Regression (DTR) model, which have been already 
employed in Acoustics [2], [10] . From a simplicity and interpretability point of view, DTR may be 
competitive with linear regression. Hence, the preliminary results and contributions of this study 
are the following: 
 

• The evaluation of the performance of DTR models to EMO as an alternative to linear 
regression, random forest, support vector machines and artificial neural network 
strategies. 
 

• The selection of variables of the model with an embedded approach, supported by their 
relevance by the Gini importance criterion. 

 
The remainder of the paper is organized as follows. Section 2.1 comprises a description of the 
database that was employed in this study. Section 2.2 presents some background on DTR. 
Section 2.3 describes the employed framework for variable selection. After that, Section 3 shows 
the results applied to the database. Finally, Section 4 draws some conclusions from the previous 
analysis. 
 
 
 
2. MATERIALS & METHODS 
 
2.1. Database 
 
This study works with EMO, which is likely to be the largest publicly available database of 
soundscapes with annotations of emotion labels currently [10]. EMO consists of more than 1200 
audio files under a Creative Commons license. The EMO`s files are classified according to 
Schafer´s taxonomy [11]. A crowd-sourcing procedure provides the perceived soundscape 
emotions, based on Russell’s affect representation, by 1182 trusted annotators with adequate 
inter-subject reliability. 
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EMO provides up to 122 normalized variables/features that are extracted from every audio file, 
with a 50% overlapping Hanning window (23 ms wide). Among the range of variables, there are 
Psychoacoustic features, such as Loudness and MFCCs; Time-domain features, such as Energy 
and Entropy; and Frequency-domain features, such as Pitch and Centroid.  
 
 
 
2.2. Decision Tree Regression 
 
DTR is a non-linear and non-parametric supervised learning method that predicts the value of the 
selected output with simple decision rules, which are inferred from the input variables in the 
training data. DTR may present visible and easy interpretation of results using a tree structure, 
and low resources on data preparation. On the other hand, DTR may produce overfitting when 
decision rules become overcomplicated, and sensitive to small data changes and data imbalance. 
This study uses the CART algorithm [12], which works as follows: the input variable space is 
divided in M overlapping regions Rm = {1...M}, For every observation, 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 , that falls into Rm, 

CART predicts SER, let 𝑦 𝑜,𝑖   be the value of arousal or valence, as the mean of the output values 

of the training data in Rm , let 𝑦  𝑜,�̂�  be the predicted value of arousal or valence. DTR aims to 

search for the Rm that minimizes the Mean Square Error (MSE), which grows the tree according 
to (1). To this end, firstly, it finds the input variable Vm and cut-point p such, that the splitting of 
the variable space into regions {V| Vm < p} and {V| Vm ≥ p} results in the maximum possible 
reduction in MSE (Rm). Next, the process repeats but splits the two previously identified regions. 
The process is an iterative greedy algorithm that remains until a stop is reached. 
 

𝑀𝑆𝐸(𝑅𝑚) =
 1

 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

∑ ∑ (𝑦 𝑜,𝑖  − 𝑦  𝑜,�̂�)
2

,           

𝑖∈𝑅𝑚

𝑀

𝑚=1

 

 
DTR deals with a range of hyperparameters for tuning the models’ predictions. For the sake of 
simplicity, this work only varies one of the most relevant hyperparameters: the maximum number 
of splits for a sample (MaxDepth). The remainder of the DTR setup is as follows: (a) The best 
split considers all the input variables and (b) the minimum number of required samples to split a 
node is two. Besides, (c) leaf nodes are unlimited and are correct with only one sample. 
  
 
 

2.3. Variable Selection Framework 
 
The reduction of variables for a model can be performed by variable transformation or variable 
selection methods. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) 
are examples of variable transformations that provide new variable sets from the original ones 
and their combinations. This study works with variable selection methods that consider subsets 
of the original variable space without any transformation through a classical procedure: (a) 
variable subset selection; (b) variable subset evaluation; (c) stop criterion setting; and finally, (c) 
the assessment of the results. The target is to maximize the relevance and minimize the 
redundancy of a variable set [13]. Variable selection methods are usually classified into filters 
(e.g., Correlation, Relief), wrappers (e.g., Naïve Bayes + Regression), and embedded (e.g., DTR, 
LASSO) methods, assuming variable independence [13]. Research in this field is fruitful but there 
is no general solution. Many authors agree methods may suit research problems depending on 
their features[14] . 
  
This paper presents a variable selection framework based on an embedded method, which is 
supported by DTR and a heuristic filter method. Firstly, the model’s fitting by DTR provides all 
variables’ importance/relevance. After that, variables are sorted according to their importance. 

(1) 
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Then, the most relevant variables are selected to build up DTR models with a reduction of 
variables heuristically. This study employed the Gini Index or Gini Importance (GI) as the variable 
importance criterion, which calculates the times a variable is used to split a tree node (weighted 
by the number of samples of the node). 
 
In the first stage, DTR models consider the 122 variables included in EMO. The selected 
performance metric was MSE for the sake of simplicity, defined generally in (1). Regarding Cross 
Validation (CV), we devoted 80% of samples to training and 20% of samples to testing. Moreover, 
a Monte Carlo approach was used for the selection of training and test samples. After some 
stability experiments, results confirmed that 1000 independent runs, Titer, provided robust enough 
results. The global importance of each variable, GIT, calculates the mean importance of that 
variable in Titer, according to (2). Let us define a vector with the GI of all the involved variables, 
GIk = [GI1, …GIk]T, where k = {1, 2,…, 122}. The performance of the model is assessed similarly, 
and the analyzed MSET is the average of MSE in Titer runs for each value of the selected 
hyperparameter, and for each number of variables, given by (3) y (4). The difference between 
Training MSET and CV MSET is the upper limit in the second summation, where Ntraining refers to 
all the samples in EMO, and NCV indicates only the test samples involved in CV.  
 
 

𝐺𝐼 𝑇 =
 1

 𝑇𝑖𝑡𝑒𝑟

∑ 𝐺𝐼𝑘

𝑇𝑖𝑡𝑒𝑟

𝑡=1

 

                                     
  

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑀𝑆𝐸𝑇 =
 1

 𝑇𝑖𝑡𝑒𝑟

 1

 𝑁𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

∑ ∑ (𝑦 𝑜,𝑖  − 𝑦  𝑜,�̂�)
2

𝑁𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑖=1

𝑇𝑖𝑡𝑒𝑟

𝑡=1

 

 

 𝐶𝑉 𝑀𝑆𝐸𝑇 =
 1

 𝑇𝑖𝑡𝑒𝑟

 1

 𝑁𝐶𝑉

∑ ∑(𝑦 𝑜,𝑖  − 𝑦  𝑜,�̂�)
2

𝑁𝐶𝑉

𝑖=1

𝑇𝑖𝑡𝑒𝑟

𝑡=1

 

 
 
 
3. RESULTS 
 
3.1. Training Set Experiments 

 

Training sets may be useful for variable selection frameworks and might avoid using further 
analysis or more complex techniques. Thus, our first experiment evaluated DTR performance with 
all the available samples in the training set. The target is the evaluation of the variables’ 
importance. This experiment also uses the Monte Carlo approach, and the outcomes are the 
mean of Titer independent runs of training.  The performance of the DTR model is excellent but 
too optimistic, as it will be confirmed with CV experiments, because DTR models tend to provide 
overfitting easily; furthermore, when MaxDepth increases largely as in this case.  
 

Figure 1 shows the performance of the DTR models in this experiment. Within the training set, 
DTR models become an error-free but only with a high value of MaxDepth, both for arousal (from 
MaxDepth = 22) and valence (from MaxDepth = 24). Other studies performed good scores for the 
training sets with linear regression for arousal (MSE = 0.0432) and valence (MSE = 0.1182) [7]. 
DTR improves those results only for a particular MaxDepth of 3 for arousal and valence. 
  

(4) 

(3) 

(2) 
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Figure 1 – Training MSET of a 122-variables DTR model (Arousal + Valence) vs MaxDepth.   

 

Table 1 presents the main results of this experiment, and it arranges the more relevant variables 
for the DTR model according to their GI. Perception features based on Loudness became the 
more significant by far both for arousal and valence. As it has been reported with linear regression 
experiments in [7], the arousal DTR model seems to require fewer variables than the valence one 
according to the GI of the 10 most relevant variables. The summation of the GI of 5 first variables 
in the arousal model results in 0.98, while in the valence model the first 10 variables only reach 
0.71. 

Table 1 – GIT of the 10 most relevant variables for the training set of a 122-variables DTR model 
(Arousal + Valence). Identification of the variables by the name and the position in EMO. 

Arousal 
Variable Loudness_ 

mean (113) 
Fluctuation

_max (4) 
Rms_
mean 

(1) 

Energy_mean 
(115) 

Zerocross
_mean 

(6) 

Mfcc_mean
_8 (31) 

Rms_std 
(2) 

Mfcc_std
_9 (45) 

Inharmonicity_
std (88) 

Hcdf_std 
(86) 

GIT 0.783 0.052 0.030 0.023 0.0094 0.0045 0.0045 0.040 0.0032 0.0031 

Valence 
Variable Loudness_ 

std (114) 
Chromagram
_std_2 (102) 

Entropy_
std (23) 

Chormagram
_mean_12 

(100) 

Mfcc_mean
_5 (28) 

Decreaseslope_
mean (3) 

Loudness
_ mean 
(113) 

Kurtosis_
std (110 

Energy
_mean 
(115) 

Brightnes
s_mean 

(10) 

GIT 0.492 0.053 0.044 0.031 0.023 0.020 0.014 0.012 0.011 0.010 

 

 

 

3.2. Cross Validation Experiments 
 
A CV procedure provides more robust models than just working the training set. Hence, MSE 
results within this experiment become worse than in the previous one. As expected, DTR usually 
overfits in training. Figure 2 shows the MSE decrease in performance for both outputs. Moreover, 
the models reach a minimum value of MaxDepth and after that, the model overfits; this effect is 
underlined for valence. The arousal DTR model with CV provides a minimum MSE of 0.0534 and 
the valence DTR model presents its best MSE of 0.151, with a MaxDepth value of 4 and 3 
respectively.   
 
This MaxDepth was close to the training experiment point where DTR improved linear models of 
previous studies. However, these optimal values are also worse than those of linear regression 
both for arousal (CV MSE = 0.045) and valence (CV MSE = 0.123) [7], although they are 
competitive. Some other techniques based on non-linear methods, such as Random Forest, 
Support Vector Machines or Artificial Neural Networks improved those scores, but they lose 
interpretability and become complex structures [8], [9], [15]. 
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  Figure 2 – CV MSET of a 122-variables DTR model (Arousal + Valence) vs MaxDepth.  

 
The next step consists of listing the most relevant variables in this experiment. Table 2 confirms 
that the pattern of variable importance in the training set appears again when including CV. The 
most important variable remains the same for both outputs and keeps the large weighting 
regarding the following relevant variables. There are some differences in the order of the rest of 
the variables. Thus, the training set experiment might provide enough information about features’ 
importance without an extensive computational load for CV.  
 
In the arousal case, there is only an order change between Energy_mean and Rms_mean, and 
in the fifth position the change of Zerocrossing_mean by Mfcc_std_9. When it comes to valence, 
some more changes came up in the order and the list of variables. Some features like 
Loudness_mean, Energy_mean, Entropy_std, Mfcc_mean_5, and Decreaseslope_mean 
remained but changed their position. The remainder went out of the list and some new variables 
were included. Two of these new features were also used in the arousal model. 
 

Table 2 – GIT of the 10 most relevant variables of a 122-variables DTR model with CV (Arousal 
+ Valence). The variables that kept the training set order are shaded in green, and the ones that 

changed their position are shaded in blue. In white, new variables regarding the training set. 

Arousal 
Variable Loudness_ 

mean (113) 
Fluctuation

_max (4) 
Energy_me

an (115) 
Rms_mean 

(1) 
Mfcc_std_

9 (45) 
Energy_std 

(116) 
Zerocross_
mean (6) 

Flux_mean 
(50) 

Loudness_ 
std (114) 

Rms_std 
(2) 

GIT 0.786 0.053 0.028 0.022 0.008 0.004 0.004 0.003 0.003 0.003 

 

Valence 
Variable Loudness_ 

std (114) 
Energy
_mean 
(115) 

Rms_
mean 

(1) 

Loudness_ 
mean (113) 

Flux_
mean 
(50) 

Mfcc_mean
_5 (28) 

Entropy
_std 
(23) 

Inharmonicity_
mean (87) 

Decreaseslope_
mean (3) 

Fluctuation
_max (4) 

GIT 0.478 0.052 0.047 0.036 0.029 0.021 0.014 0.012 0.011 0.009 

 

 

 

3.3. Experiments with a Heuristic Filter 
 

The final step of this variable selection proposal is the application of a heuristic filter over the 
results of the embedded method, which was obtained but the GI of variables when performing the 
DTR model using all the available samples for training. This dataset shows an extremely relevant 
variable for both outputs due to their outperformance in GI terms. These variables are the same 
in the training and CV experiments too.  
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First, we considered a GIT summation of the most important variables, Xk, which are greater than 
80% in the training outcomes, given by (5). This percentage is a simple Pareto rule to check. 
Hence, we could assess the model with only two variables for arousal and more than ten variables 
for valence. Furthermore, to collect more information about the variable selection framework, we 
also performed the DTR models with the two, three, four and five most relevant variables in the 
training and the CV experiments. For the sake of the readability of the paper, we only scrutinized 
the results of the arousal output. 
 

𝑋 𝑘
∊ 𝐺𝐼 𝑇 =

 1

 𝑇𝑖𝑡𝑒𝑟

∑ 𝐺𝐼𝑘 ≥ 0.8

𝑇𝑖𝑡𝑒𝑟

𝑡=1

 

                                 

 

Thus, according to Table 1 and Table 2, for one and two-variables models for arousal, the training 
and CV frameworks result in the same features (Loudness_mean, and Loudness_mean + 
Fluctuation_max). The rest of the models included some changes in the chosen variables. 
 

Table 3 – DTR models performance after employing the proposed variable selection framework, 
including a comparison with the initial 122 features model with CV. 

 

Number of Variables 
Variable Selection 

option 
Best MSE 

MaxDepth of best 
MSE 

MSE difference vs 122 
variables model (%) 

1 Training / CV 0.07354 3 + 38.4 

2 Training / CV 0.04691 5 -11.7 

3 Training 0.04902 5 -7.7 

4 Training 0.04891 5 -7.9 

5 Training 0.04819 6 -9.2 

3 CV 0.04866 5 -8.4 

4 CV 0.04868 5 -8.3 

5 CV 0.04882 6 -8.1 

 

 

According to Table 3, a reduction of variables led to better models’ performance. Models with a 
few features showed lower MSE than a 122 variables model. Although the more relevant variable 
features an extraordinary weighting compared to the rest, a one-feature model performs poorly 
concerning other analyzed alternatives. The heuristic filter seems to work properly, and the 
enhancement of performance starts at the expected number of variables, which is two. Moreover, 
the two-features model shows the better score of all the scrutinized models. The use of more 
variables might generate overfitted models as the increase of MaxDepth did in previous 
experiments. Thus, these results also suit the general theory of DTR, which shows better 
generalization as the model remains simple. 
 
The variable selection framework of the training experiments overcame the 122-features model. 
From three to five features, the training outcomes are slightly worse than the CV experiments 
regarding MSE, but the complexity of the models is the same with structures between 5 and 6 of 
MaxDepth. 
 

 

 

4. CONCLUSIONS 
 
Regression models require the lowest computational load to save resources from different points 
of view. Variable selection techniques may help reduce the number of relevant features. The 
presented variable selection framework provided a dimensionality reduction when DTR model 
SER from EMO. 

(5) 



 
 

53º CONGRESO ESPAÑOL DE ACÚSTICA  
XII CONGRESO IBÉRICO DE ACÚSTICA 

 
DTR revealed a competitive performance as a predictive model for SER. Other approaches 
overcome MSE, but DTR may improve the interpretability of the model. Moreover, the presented 
variable selection framework based on DTR provides solutions with few variables, and thus, a 
parsimonious predictive tool. 
 
The use of all the samples of the dataset for training might help select relevant variables for a 
DTR model. According to the experiments, the variables’ importance in training are similar to 
those ones obtained by CV. Thus, working with a variable selection framework in the training 
stage provides a trade-off between computational load and competitive results. 
 
The next research steps focus on the same analysis for valence, the application of this variable 
selection framework before the training and validation of other regression algorithms, and the 
performance of this solution counting on more DTR hyperparameters. 
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Cuotas de Inscripción: Workshop Clasificación Acústica de Edificios (Acceso libre, previa inscripción) (0 €)

Total pagado: 525€

Acceso a la plataforma:

https://www.tecniacustica.es/TECNIACUSTICA2022
Usuario: roberto.sanmillan@urjc.es
Contraseña: Cumpliendo con el Reglamento UE 679/2016, de 27 de abril, General de Protección de Datos, y
con la Ley Orgánica 3/2018, de Protección de Datos Personales y Garantía de los Derechos Digitales, no
tenemos acceso a su contraseña. Si no la recuerda puede recuperarla pulsando en "¿Ha olvidado su
contraseña?", en la caja de inicio de sesión.

Le recordamos que en Mi Congreso podrá consultar el estado de su inscripción, comunicaciones enviadas y
realizar cualquier otro tipo de actividad relacionada con el congreso.

Atentamente,
 

SECRETARÍA TÉCNICA
Viajes El Corte Inglés, S.A.
M.I.C.E. Madrid Congresos
Telf: (+34) 91 330 07 55
tecniacustica@viajeseci.es
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