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Resumo 

Cravação de estacas é uma das técnicas mais antigas utilizada na construção de fundações profundas e 

ainda amplamente empregada nas construções modernas. Apesar de suas inúmeras vantagens técnicas, 

este método induz a propagação de vibrações significativas no terreno. Estas vibrações interagem com 

estruturas vizinhas e podem causar perturbação para os utilizadores ou até danos estruturais, em casos 

mais extremos. No presente trabalho, um modelo numérico para a previsão de vibrações induzidas pela 

cravação de estacas por vibração é apresentado. Nesta abordagem, o método dos elementos finitos no 

domínio do tempo é utilizado, considerando um eficiente método semiexplícito/explícito de marcha no 

tempo. A formulação numérica é apresentada e posteriormente é realizado um exemplo de aplicação. 

Os resultados obtidos são comparados com estudos disponíveis na literatura e demonstram o bom 

desempenho do método proposto. 

 

Palavras-chave: cravação de estacas, vibrações, método dos elementos finitos, simulação no domínio 

do tempo. 

Abstract 

Pile driving operation is one of the oldest methods for constructing foundations and it is still widely 

employed in modern constructions. Besides its numerous technical advantages, this method induces 

ground-borne vibrations. These vibrations interfere with nearby structures and may cause disturbance 

to building users or even structural damage, in extreme cases. In this work, an effective numerical model 

for the prediction of vibrations induced by vibratory pile driving is presented. In this approach, the finite 

element method is employed in the time domain considering an efficient semi-explicit/explicit time 

marching procedure. The numerical formulation is presented and an application example is carried out. 

The obtained results are compared with previous studies and demonstrate the good performance of the 

proposed model. 
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1 Introduction 

Numerical methods have numerous applications for dealing with complex problems in various branches 

of science and engineering. Several numerical approaches are available in the literature for the prediction 

of ground-borne vibrations induced by railway traffic [1,2], road traffic [3,4] and pile driving [5,6,7]. In 

the present work, a numerical model based on time domain finite element method (FEM) is developed 

for the study of vibratory pile driving. This traditional foundation technique presents various advantages 

and is still widely used in modern constructions, despite its environmental disturbance. Concerning its 

negative aspects, noise and air pollution are relatively easy to overcome with adequate isolation 

measures [8]. On the other hand, ground-borne vibrations are difficult to predict and, in most cases, 

considerably expensive to mitigate. In the vast majority of practical engineering applications, the peak 

particle velocity (PPV) is still estimated according to simplified empirical energy-based methods [9]. 

However, empirical models usually disregard fundamental features of the pile driving operation and of 

the response of the system [8]. Thus, a numerical model for the prediction of ground-borne vibrations 

induced by vibratory pile driving is implemented in this work. In order to do so, the finite element 

method in time domain is employed, considering an innovative and entirely automatized time marching 

technique [10]. A case study is carried out and the computed results are compared with previous 

numerical studies and field measurements available in the literature. 

2 Governing equations and time marching procedure 

The governing system of equations of a dynamic model, considering time domain FEM formulation, is 

given by [11]: 
 

  𝐌𝐔̈(𝑡) + 𝐂𝐔̇(𝑡) + 𝐊𝐔(𝑡) = 𝐅(𝑡) (1) 

 

where 𝐔̈(𝑡), 𝐔̇(𝑡) and 𝐔(𝑡) stand for acceleration, velocity and displacement vectors, respectively; 𝐅(𝑡) 

stands for the applied force vector and 𝐌, 𝐂 and 𝐊 stand for mass, damping and stiffness matrices, 

respectively. The initial conditions of this system are: 𝐔(0) = 𝐔0 and 𝐔̇(0) = 𝐔̇0 (where 𝐔0 and 

𝐔̇0stand for the initial displacement and initial velocity vector, respectively). The equation of motion 

(Equation 1) is solved employing a semi-explicit/explicit time marching proposed by Soares [10]. Once 

linear analysis is the focus of the present work, a simplified approach of this time integration scheme is 

presented here. In this novel technique, the standard Central Difference Method (CDM), a conditionally 

stable, second order accurate, explicit method, is employed for the approximations of the time derivative 

of the displacements field, which are defined as: 
 

  𝐔̈𝑛 =
1

Δt2
(𝐔𝑛+1 − 2𝐔𝑛 + 𝐔𝑛−1)  (2) 

  𝐔̇𝑛 =
1

2Δ𝑡 
(𝐔𝑛+1 − 𝐔𝑛−1) (3) 

 

where 𝑛 indicates the time step of the variable and Δ𝑡 stand for the time step of the analysis. The adopted 

time integration scheme is locally defined (the subscript “e” indicates that the variable is local), based 

on the following recursive relation:  
 

  (𝐌̅𝑒 +
1

2
Δ𝑡𝐂𝑒) 𝐔𝑒

𝑛+1 = Δ𝑡2(𝐅𝑒
𝑛 − 𝐊𝑒𝐔𝑒

𝑛) + 𝐌̅𝑒(2𝐔𝑒
𝑛 − 𝐔𝑒

𝑛−1) +
1

2
Δ𝑡𝐂𝑒𝐔𝑒

𝑛−1 (4) 
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which reproduces the standard CDM when 𝐌̅𝑒 = 𝐌𝑒 is adopted. The modified local mass matrix 𝐌̅𝑒 is 

given by: 
 

  𝐌̅𝑒 = 𝐌𝑒 + Δ𝑡2𝑎𝑒𝐊𝑒 (5) 

 

where 𝑎𝑒 is a local parameter, defined in order to ensure the stability of the method. As it is well 

stablished, the CDM is conditionally stable and presents a critical sampling frequency Ω𝑐 = 2. The idea 

of the adopted time marching procedure is to evaluate the maximum sampling frequency of each element 

and, if they are greater than 2, to compute a proper value for 𝑎𝑒 in order to assure the stability of the 

element. Therefore, the parameter 𝑎𝑒 is automatically computed as follows:  
 

  if Ω𝑒
𝑚𝑎𝑥 ≤ 2, 𝑎𝑒 = 0 (6) 

  if Ω𝑒
𝑚𝑎𝑥 > 2, 𝑎𝑒 =

1

4
tanh (

1

4
Ω𝑒

𝑚𝑎𝑥) (7) 

 

where Ω𝑒
𝑚𝑎𝑥 stand for the maximum sampling frequency of the element. Thus, the standard explicit 

CDM is reproduced whenever Ω𝑒
𝑚𝑎𝑥 ≤ 2 (stable element) and an effective implicit method arises 

otherwise (stabilized element). The variable Ω𝑒
𝑚𝑎𝑥 is calculated as follows: 

 

  Ω𝑒
𝑚𝑎𝑥 = 𝜔𝑒

𝑚𝑎𝑥Δ𝑡 (8) 

 

where 𝜔𝑒 stands for the maximum natural frequency of the element, computed as the square root of the 

maximum eigenvalue of the locally defined generalized eigenvalue problem [12], given by: 
 

  𝐊𝑒𝜙𝑒 = 𝜔𝑒
2𝐌𝑒𝜙𝑒 (9) 

 

Hence, this time integration scheme is simple to implement and quite efficient, since explicit and implicit 

subdomains are automatically generated according to the geometrical and physical properties of the 

discretized model. In addition, it is entirely automatized and requires no decision or expertise from the 

user (which must only define the time step of the analysis).  

3 Numerical modelling 

3.1 Model dimensions and properties 

Three penetration scenarios are studied in this work (ℎ1 = 2 [m], ℎ2 = 5 [m] and ℎ3 = 10 [m]), since 

the penetration depth plays a significant role in the propagation pattern. The finite element method, 

considering an axisymmetric formulation is implemented with triangular quadratic elements (6 nodes). 

In addition, a lumped mass matrix is considered, which is a requirement of explicit time marching 

procedures. The mass diagonalization is computed employing the diagonal scaling procedure proposed 

by Zienkiewicz et al. [13]. The adopted dimensions of the numerical model are 𝐻 = 20 [m] (depth) and 

𝐿 = 30 [m] (length). A sketch of the model considering the third penetration scenario (ℎ3 = 10 [m]) is 

depicted in Figure 1. 
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Figure 1 – Sketch of the numerical model for ℎ3 = 10 [m]. 

The damping ratio of the soil is considered as 𝜉 = 2.5 % (the numerical approach of the physical 

damping matrix is presented in Section 3.2). As one may observe, a damping layer (𝐿𝑑𝑎𝑚𝑝 = 5 [m]) is 

also considered, which is computed with a linear increasing damping factor from  𝜉 = 2.5 % up to 𝜉 =
100 % in the end of the domain. This damping layer is implemented to avoid spurious wave reflections 

on the boundaries of the domain and simulate an infinite medium. A concrete pile is considered with 

𝐿𝑝 = 10 [m] (pile length) and 𝑑𝑝 = 0.5 [m] (pile diameter).  The soil and pile physical properties (Table 

1) are the same as the ones employed by Masoumi et al. [6], in order to evenly compare the obtained 

results. 

Table 1 – Soil and pile properties. 

Property Soil Pile 

Young modulus 𝐸𝑠 = 80 [MPa] 𝐸𝑝 = 40 [GPa] 

Poisson ratio 𝜈𝑠 = 0.40 [−] 𝜈𝑝 = 0.25 [−] 

Mass density 𝜌𝑠 = 2000 [kg m3⁄ ] 𝜌𝑝 = 2500 [kg m3⁄ ] 

 

The finite element mesh is generated in Gmsh [14] with approximately 72000 nodes and 36000 elements 

(the number of nodes and elements varies accordingly to the penetration depth considered). The critical 

time step for the three studied scenarios is Δ𝑡𝑐 = 7.1899 × 10−6 [s] (conservatively evaluated 

considering the critical values of each element) and the adopted time step is Δ𝑡 = 2 × 10−4 [s]. Thus, 

following the formulation presented in Section 2, explicit and implicit subdomains are automatically 

generated accordingly to the physical and geometrical properties of each element. The number of 

explicit and implicit elements for each penetration depth is shown in Table 2. In addition, the domain 

decomposition for the penetration depth ℎ3 = 10 [m] is depicted in Figure 2. 

Table 2 – Properties of the FEM meshes adopted. 

Penetration 

depth 
Nodes Elements 

Explicit 

elements 

Implicit 

elements 

ℎ1 = 2 [m] 72412 35933 25762 (71.69%) 10171 (28.31%) 

ℎ2 = 5 [m] 72339 35910 25750 (71.71%) 10160 (28.29%) 

ℎ3 = 10 [m] 72192 35859 25726 (71.74%) 10133 (28.26%) 



 Acústica 2020 – TecniAcústica 2020, 21 a 23 de outubro, Portugal  

 

 

 
5 

 

 

Figure 2 – Domain decomposition for ℎ3 = 10 [m]. White elements correspond to explicit elements 
(𝑎e = 0) and grey/black elements correspond to implicit elements (𝑎𝑒 > 0). 

3.2 Physical damping approach 

As previously discussed, the lumped mass matrix is obtained by employing the diagonal scaling 

procedure [13]. In addition, the time marching scheme adopted in this work presents explicit and implicit 

subdomains in the same analysis. In order to fully explore the advantages of the method, a diagonal 

damping matrix must be employed in the explicit subdomain. Thus, a mass proportional damping matrix 

is considered for the model, which is evaluated as: 
 

  𝐂𝑒 = 𝛾𝐌𝑒 (10) 

 

where 𝛾 is defined as: 
 

   𝛾 = 2𝜉𝜔𝑘 (11) 

 

where 𝜔𝑘 stands for the control frequency (in [rad s⁄ ]), assumed here equal to the loading frequency 

(see Section 4.1): 
 

   𝜔𝑘 = 125.66 [rad s⁄ ] = 20 [Hz] (12) 

 

Thus, the parameter 𝛾 is given by: 
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   𝛾 = 6.2832 (13) 

 

The actual damping ratio applied in the model versus frequency (in [Hz]) is depicted in Figure 3. It is 

important to highlight that, in the adopted damping approach, the physical damping varies according to 

the frequency. The idea here is to assure the adopted damping ratio (𝜉 = 2.5%) for the loading frequency 

(20 [Hz]). 

 

Figure 3 – Physical damping of the model. 

4 Case study 

4.1 Vibratory driving force 

A case study is presented in this section, with a numerical model developed according to the previously 

described methodologies. The same properties and assumptions adopted by Masoumi et al. [6] are 

considered here. A sinusoidal force is applied at the center of the pile head, in order to simulated an ICE 

44-30V hydraulic vibratory hammer [6]. This force is computed as: 
 

   𝐹(𝑡) = 𝑚𝑒 (2𝜋𝑓)2 sin(2𝜋𝑓 𝑡) (14) 

 

where 𝑓 = 20 [Hz] is the operation frequency of the equipament and 𝑚𝑒 = 50.7 [kg m] is the excentric 

moment. Thus, the maximum applied dynamic force is 𝐹𝑚𝑎𝑥 = 800 [kN]. It should be stressed that this 

load is added to the static load imposed by the weight of the driving device. 

4.2 Results and discussion 

In this numerical application, ground vibrations due to vibratory pile driving are studied for three 

penetration depths (ℎ1 = 2 [m], ℎ2 = 5 [m] and ℎ3 = 10 [m]). Figure 4 shows the norm of the particle 

velocity for the considered scenarios. As one may observe, the damping layer is not depicted in the 

snapshots, but it is working properly, since no spurious reflections are occurring in the boundary of the 
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domain. It also may be observed that a larger amount of energy is presented for the lowest penetration 

depth (Figure 4(a)) when compare with the deeper scenario (Figure 4(c)). This complex behavior occurs 

mainly because two wave fronts are generated during the pile driving operation: from the pile shaft and 

from the pile toe. The interaction between these waves and the ground surface induces the formation of 

Rayleigh waves. In this sense, lower penetration depths lead to a smaller distance between the pile toe 

and the ground surface, which lead to higher amount of energy that reach the surface and that is 

converted to Rayleigh waves (Figure 4(a)). The opposite behavior is observed for deeper scenarios 

(Figure 4(c)). In addition, the implemented model correctly simulated the separation between the surface 

waves (located at the ground surface) and the body waves (located in the depths of the ground), which 

travel in slightly different velocities. 

 

Figure 4 – Snapshots of the norm of the particle velocity: (a) ℎ1 = 2 [m], (b) ℎ2 = 5 [m] and (c) ℎ3 =
10 [m]. 
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The particle trajectories for three ground points located at 𝑟 = 0.5 [m], 𝑟 = 5 [m] and 𝑟 = 10 [m] for 

the three penetration scenarios studied are presented in Figure 5. The different types of waves generated 

during the vibratory pile driving are correctly simulated by the model. For the point located near the 

vicinity of the pile (𝑟 = 0.5 [m]), a domination of vertical displacement is observed, which demonstrates 

the presence of SV-waves. For the points located far away from the pile (𝑟 = 5 [m] and 𝑟 = 10 [m]), 
the particle displacement presents an elliptical pattern, typical of Rayleigh waves. Thus, body waves are 

mostly attenuated in the far field and the ground vibrations are mainly dominated by surface waves. 

 

Figure 5 – Particle trajectories of ground points at radial distance 𝑟 = 0.5 [m], 𝑟 = 5 [m] and 𝑟 =
10 [m] for three penetration depths: (a) ℎ1 = 2 [m], (b) ℎ2 = 5 [m] and (c) ℎ3 = 10 [m].  

Figure 6 shows the variation of the PPV versus the depth at 𝑟 = 0.5 [m] and 𝑟 = 10 [m]. Since the 

strain measure is proportional to the peak particle velocity, this figure may be interpreted as the shear 

deformation of the soil [9]. For smaller penetration depth, the PPV is larger and decreases quickly over 

ground depth. On the other hand, for deeper penetration scenarios the PPV has a smaller magnitude but 

the variation along the pile shaft is smooth. This pattern is consistent with the previous results (Figure 
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4), since the energy is mostly located at the surface for smaller penetration depths. In Figure 7, the peak 

particle velocity versus the radial distance is presented. It is important to highlight that the case study 

presented by Masoumi et al. [6] is reproduced here, in order to compare the computed results. The slope 

of the vibration attenuation is quite similar to the previous numerical approach. However, a conservative 

prediction is obtained considering the field measurement presented, since plastic deformations are not 

accounted in these numerical models.  

 

Figure 6 – PPV versus depth for the radial distance (a) 𝑟 = 0.5 [m] and (b) 𝑟 = 10 [m]. 

 

Figure 7 – PPV versus radial distance for several penetration depths. 
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5 Conclusions 

An efficient time domain finite element model is developed for the prediction of ground-borne vibrations 

due to vibratory pile driving. An axisymmetric formulation is considered, which presents excellent 

results with a considerably smaller computational cost. Furthermore, the effective time marching 

procedure adopted also allowed to diminish the computational costs, since implicit (and more expensive) 

subdomains were automatically generated only when necessary, according to the stability of the model. 

A case study was carried out and the same properties available in the literature were employed, in order 

to obtain a consistent comparison. The computed results presented good agreement with previous 

numerical and empirical studies, which demonstrate the applicability of the proposed numerical model. 

In addition, the body waves and surface waves generated during the vibratory pile driving operation 

were correctly simulated. The linear constitutive model is a conservative approach for the behavior of 

the soil. In fact, large strains occur in the vicinity of the pile, which is not compatible with linear analysis. 

Therefore, the proposed methodology will be extended to nonlinear behavior in future works. 
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