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Abstract
A car moving on the road is an element of tyre/road noise generation in itself. The rolling noise levels and
spectral components change by the effect of the road aging, speed, and the surface characteristics of both the
tyre and the asphalt. The processing of this sound signal by acoustic featuring tasks can provide valuable
information on the characteristics and status of the road surface. Pattern recognition techniques are applied to
detect areas with similar asphalt conditions. The features in the frequency domain have proven to be suitable
as a source of information for automatic asphalt quality detection for a test route where there are two kinds of
asphalt conditions.
In this study, some results of both acoustic featuring comparison and automatic learning algorithms for
road condition identification are presented. The capabilities of the new methodology for asphalt condition
identification are shown as an alternative to improve maintenance activities and road safety. Additionally, the
basic sensors setup provides the advantage of any passenger car, even a fleet, to easily become an asphalt
condition inspector collaboratively.
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1 Introduction

The continuous exposure of roads to mechanical loads from vehicles and environmental factors are the main
causes of pavement deterioration. This gradual degradation influences both road safety and traffic noise
emissions, making it important to perform periodic inspections of the asphalt surface [1]. Several road
infrastructure inspection methods have emerged to assist in road and street maintenance and rehabilitation
plans. In this regard, new inspection methods based on indirect acoustic analysis have presented some
advantages over traditional methods [2]. Accordingly, the results of automated detection of changes in the
road surface condition from the characterization of the sound recorded in the tyre-road interaction zone are
presented. Classification and analysis of surface homogeneity using pattern recognition algorithms have shown
good performance in identifying the defectology of the tread layer.

2 Material and methods

The workflow for the automatic road distress identification, depicted in Figure 1, starts with the acquisition
of the tyre pavement interaction noise (TPIN), driving conditions (speed and acceleration), and georeference
throughout the driving over a testing route.
The test route has an approximate length of 2.4 km, and clearly shows two conditions of superficial status based
on ageing and deterioration. The newest street zone is one year old, while the oldest one is more than three
years old. See the Figure 2.
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The materiality of the asphalt mixture is considered the same over the road circuit although the macrotexture
would change due to the deterioration status. The tests were performed with a unique tyres set.

Figure 1: Block diagram for the automatic shifts detection in the road surface condition

Figure 2: Actual road status on experimental route.

Then, the databases are constructed by digital signal processing of the TPIN. Next, the processing by pattern
recognition algorithms will detect the shifts on superficial road status. Finally, the classification results will be
presented by road map reports.

2.1. Data acquisition
For the data acquisition, a portable set of sensors was employed to the simultaneous register of the TPIN signal,
the GPS trip information and the driving parameters, during a normal trip of a light diesel vehicle. For the
sound signal register, one microphone was located on each rear wheel arch, pointed to the tyre/road interaction
zone. The acquisition device was connected to a laptop computer, and the audio files were recorded at 51,2 kHz
sample rate.

2



The georeference and driving parameters were registered by the OBD adapter mounted on the car and linked to
the smartphone via Bluetooth. Both the phone and laptop were linked to the same Wi-Fi network obtaining the
same date-time information.

2.2. Dataset design
The feature extraction process of N (1-second) sound signal frames was executed in the time, frequency, and
cepstral domain. Only audio frames that have been captured while the car was travelling faster than and
including 30km/h will be processed.
The first dataset was made only considers the features of TPIN on time, such as equivalent noise: Lrms, crest
factor CF , and the zero-crossing ratio ZCR.
The second data set consists of the spectral representation of the signal using a 1/3 octave filter bank [3].
The third dataset includes as features a set of t=31 triangular filters. The central frequencies of the triangular
filter bank are logarithmic spaced based on mel-scale, where the initial central band starts in f ct=1 = 392.8Hz.
Then the low cut-off frequency: f lt = f ct/1.0718 and the upper cut-off frequency f ut = f ct ∗ 1.078. In
addition, it follows that f c(t+1) = f ut [4].
The influence of the car speed and acceleration on each triangular frequency band was considered and
subsequently corrected by the linear relation of the Eq. 1 .

L
′

f = L f − α f · log10

(
v

vre f

)
− β f · ac (1)

Where, L f is the tyre/road noise level on each frequency band, v is the car speed, ac is the car acceleration,
vre f = 70km/h is the reference speed, α and β are coefficients of the linear regression by each frequency band.
The last dataset includes the 14 MFCC coefficients of each audio frame. Table 1 presents the amount of data for
each dataset extension. Consequently, three datasets on different domains could be examined for the detection
of road deterioration status.

Domain Features Number of features Observations-Frames [N]

Time Overall noise levels 3 744

Frequency
Triangular filter banks 31 744

1/3 octave filter bank 31 744

Cepstral MFCC 14 744

Table 1: Datasets for automatic detection.

The Figure 3 shows the tyre/road noise amplitude of the signal obtained by 1 microphone during a lap of the
test road. It shows that the zones corresponding to the label “1-deteriorated” are the ones with the highest
amplitude; and the zones corresponding to label “0-new” have the lowest amplitude of the extracted features.

2.3. Results of the automatic learning approaches
Road condition identification was analyzed using two strategies. First, supervised classification will assign a
road state according to two possible state classes known a priori. Subsequently, the unlabeled dataset will be
processed by unsupervised learning to detect clusters that can be associated with the road state.

Supervised classification
The supervised classification models trained were: Support Vector Machine (SVM) and k-Nearest Neighbors
(k-NN). These showed strong results for the classification of sound events based on rolling noise [3, 5, 6].
The models were trained and evaluated with the datasets separately, see Table 1. The training and evaluation
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process was developed through cross-validation (k-fold=5) and the “F1-score” metric was used and reported in
the Table 2.

Figure 3: Feature space domains. Actual labels: 0-new pavement, 1-deteriorated pavement.

F1-score
Model

Features k-NN (k=5) SVM

Time 0.88 (0.03) 0.88 (0.04)

Freq 1/3 oct. 0.93 (0.02) 0.97 (0.02)

Freq Triangular 0.93 (0.03) 0.95 (0.03)

MFCC 0.97 (0.01) 0.96 (0.01)

Table 2: F1-score metric for the classification supervised model

Unsupervised classification
Unsupervised learning aims to train a clustering model that can identify groups into feature space data
corresponding to different road surface conditions, from the distribution of the unlabeled data. A new dataset
was formed by both features: in the time and the triangular filters obtained in the frequency domain. The
features were standardized. Subsequently, the t-SNE algorithm was run for feature reduction; see Figure 4.
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The elbow method assists in the selection of the optimal number of clusters K by Sum of Squared Errors or
Inertia (SSE) function minimization; see Figure 5.

Finally, the clustering analysis was performed using the probabilistic Gaussian Mixture Model (GMM)
technique, which forms ellipsoidal clusters [7].

Figure 4: Visual representation of vectors distribution
from test data using t-SNE [8]

Figure 5: Selection of clusters number K by
elbow method [7]

3 Results on map

The comparison of the results of the above approaches for the identification of changes in road condition is
presented in maps; see Figure 6. The observations from the predicted dataset predicted dataset are presented
georeferenced and were coded by the color assigned to each class of road surface deterioration. Also for the
unsupervised clustering results, each cluster was assigned a different color code.

Figure 6: Georeferenced road surface detections
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4 Conclusions

This paper reports the results of a straightforward experiment for the automatic identification of road surface
condition based on its deterioration, by processing the rolling noise signal and with the application of pattern
recognition algorithms.
We first evaluated the performance of two supervised classification algorithms for detecting deteriorated
areas of the road surface. The SVM and k-NN models show satisfactory performance in the identification of
areas with "new" or "deteriorated" asphalt, based on the features obtained from the acoustic footprint of the
rolling noise. However, when running the unsupervised learning or clustering algorithm, it is observed that
the algorithm can identify the existence of a third group of data. The extra group of data appears concentrated
in the transition zones between the a-priori known asphalt status classes, it lets us to identify the road status
shifting zones. The unsupervised learning approach has made it possible to detect homogeneous areas of the
asphalt surface. The results were compared with supervised detections and with visual evidence of the road
surface condition.
Some methodological details colud be improved for future works, such as driving an electric vehicle to
record a more purely rolling signal, exploiting the detection task using frequency features and deep learning
algorithms; finally, the unsupervised learning could include unattended feature generation in latent spaces
using autoencoders and subsequent clustering of these features.
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