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Abstract 

In the design of plate structures it is of particular interest to bound the levels of sound transmission and related 

discomfort. In presence of narrowband excitations, such as harmonic loads due to rotating machines, a reduced 

sound transmission can be achieved through a limited mechanical response by avoiding structural resonances 

in the related frequency bands. This also helps in preserving the structural integrity. In this work, an approach 

based on topology optimization is proposed to find the optimal material thickness distribution within the plate 

area, in order to maximize the width of the frequency band that does not contain structural eigenfrequencies. 

The method is here applied targeting different frequencies in the audible range and focusing on practically 

relevant design cases, such as the optimal design of PMMA panels and single glazing structures. An efficient 

optimization is obtained through a simple mechanical Finite Element (FE) model to predict the structural 

eigenfrequencies, and the improvement in Sound Transmission Loss (TL) for the optimized designs is then 

verified through hybrid Finite Element-Statistical Energy Analysis (FE-SEA) simulations. 

Keywords: Topology optimization, sound transmission loss, optimal material distribution, PMMA panel, 

glazing panel. 

1 Introduction 

In the design of plate structures, improved vibration response and sound insulation behaviour in specific 

frequency bands can be achieved by considering a non-uniform material distribution [1,2]. An interesting 

approach is to design optimal structures with controlled eigenfrequencies, as eigenfrequencies are the key 

elements in obtaining the desired dynamic vibroacoustic performance [1] and can be computed with reduced 

computational cost with respect to full dynamic simulations for several frequencies.  

In presence of narrowband disturbances, such as harmonic loads due to rotating machines, the vibroacoustic 

performance of the structure can be improved by moving its eigenfrequencies as far as possible from the 

disturbance frequency. In this paper, we apply this design strategy to plate panels for civil applications, in 

order to effectively bound the levels of vibration and sound transmission, i.e. preserving the structural integrity 

while improving the comfort of people. The focus is on both PMMA and glazing panels, that will be optimized 

considering different possible disturbance frequencies in an application relevant range. 

The design problem is solved through the topology optimization approach [3], in order to find the optimal 

thickness distribution within the panel area that maximizes the width of the frequency band around the 

disturbance that has no eigenfrequencies. The optimal layouts are found relying on an in-vacuo mechanical 

finite element model of a simply supported plate, that allows for a computationally efficient optimization. The 

sound insulation performance of the optimized layouts are verified a posteriori through a hybrid finite element 

statistical energy analysis (FE-SEA) model [4], in which the deterministic (FE) model of the plate is coupled 

with the sound fields in the source and receiving rooms, modelled as diffuse (SEA) subsystems. 

The present paper is organized as follows: Section 2 describes the mechanical finite element model used to 

compute the structural eigenfrequencies, along with the considered design variables to describe the thickness 
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distribution. Section 3 presents the formulation of the topology optimization problem and the details of the 

associated solution procedure. The results of the topology optimization when optimizing the modal behaviour 

of the panel are shown in Section 4, while in Section 5 we verify the achieved improvements on the sound 

transmission loss by hybrid FE-SEA analyses. Finally, Section 6 concludes the paper with a summary of the 

main findings and drawing the related conclusions. 

 

2 Mechanical finite element model of the plate and design variables  

Referring to Figure 1, the plate panel is modelled as simply supported on its four edges, and discretized by 50 

× 50 Kirchhoff plate elements. The eigenfrequencies ω𝑖 and the modal shapes 𝚽𝒊 of the structure can be found 

by solving the following eigenvalue problem: 

(ω𝑖
2𝐌 + 𝐊)𝚽𝐢 = 𝟎 (1) 

where 𝐊 and 𝐌 are the global stiffness and mass matrices respectively. The eigenfrequencies in Hz can be 

found as f𝑖 = ω𝑖/2π. 

The thickness distribution is described by associating each 𝑒-th finite element with a design variable γ𝑒 ∈ [0,1] 
that is used to scale the element thickness. The filtering scheme from [5] is applied to the field of design 

variables 𝛄, in order to avoid spurious checkerboard layouts and mesh dependence in the obtained solution. 

Starting from γ𝑒, the filtered design variables are obtained through the following convolution type filter: 

γ̃𝑒 =
∑ w(𝐱𝒋)v𝑗γ𝑒,𝑗𝑗∈ℕs,𝑒

∑ w(𝐱𝒋)v𝑗𝑗∈ℕs,𝑒

 (2) 

where v𝑗 is the volume of the 𝑗-th element and ℕs,𝑒 is the set of neighbouring elements, i.e. the set of elements 

lying within a circle with radius rmin centred on the centroid of element 𝑒. The linear weighting function w(x𝑗) 

is given as: 

w(x𝑗) = rmin − |𝐱𝒋 − 𝐱𝒆| (3) 

where 𝐱𝒋 = (x𝑗, y𝑗) and 𝐱𝒆 = (x𝑒 , y𝑒) are the coordinates of the centroids of elements 𝑗 and 𝑒. 

The filtered design variables are used to scale the thickness of each finite element between a minimum and a 

maximum value (tmin and tmax respectively), and then to accordingly scale its stiffness and mass matrices: 

t𝑒 = tmin + (tmax − tmin) ⋅ γ̃𝑒         ⇒         𝐊𝒆(t𝑒) = 𝐊𝒆(t = 1) ⋅ t𝑒
3,     𝐌𝒆(t𝑒) = 𝐌𝒆(t = 1) ⋅ t𝑒 (4) 

where 𝐊𝒆(t = 1) and 𝐌𝒆(t = 1) are the matrices related to reference elements with unitary thickness. The 

scaled element matrices are assembled to find the global matrices used in Eq. (1). 

 

Figure 1 – Scheme of a simply supported plate discretized by finite elements. 
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3 Formulation and solution of the topology optimization problem 

The design problem is formulated in order to find the optimal thickness distribution within the panel area, that 

maximizes the width of the frequency band with no structural eigenfrequencies around the disturbance 

frequency. This is achieved by considering the following objective function and constraints: 

max𝛄,β  β

subject to: {
β ≤

|f𝑖 − fc|
fc

    ∀𝑖

Vol =
∑ v𝑒γ̃𝑒𝑒

∑ v𝑒𝑒
≤ 1

(5)
 

Referring to Figure 2, the focus is on the normalized distance |f𝑖 − fc|/fc between the 𝑖-th eigenfrequency f𝑖 

and the disturbance frequency fc. In order to maximize the normalized distance of the closest eigenfrequency, 

we introduce a further design variable β, that is used as the objective function to be maximized while imposing 

that β is lower than all the considered normalized distances. As it will be shown in the next Section, the final 

value of the objective function β will be therefore directly related to the width of the obtained frequency range 

with no eigenfrequencies. No particular constraints are imposed on the fraction of usable material Vol, that is 

free to vary between 0 and 1. 

The formulated optimization problem in Eq. (5) is solved for local optimality using the gradient-based Method 

of Moving Asymptotes (MMA) [6]. The method iteratively updates the thickness distribution depending on 

the values and the derivatives of objective function and constraints, until all constraints are satisfied and a 

maximum in the objective function is found. In particular, the sensitivities of objective function and constraints 

are found analytically, by differentiating their expressions and by exploiting the expression for eigenvalue 

sensitivities found in [3]. 

We note that our preliminary numerical experiments have shown that the considered design problem results to 

be non-convex, and the local optimum found by the MMA in general depends on the initial set of design 

variables. In order to mitigate this effect and better approximate the global optimum, we therefore perform 

multiple optimizations for each considered design case, by considering different initial guesses consisting of 

uniform thickness distributions with different constant values. 

Figure 2 – Illustrative mechanical response of a plate panel, with marked distance between the disturbance 

frequency fc and the 𝑖-th eigenfrequency f𝑖. 



 

 

 4 

Table 1 – Material and geometrical properties of the considered PMMA and glazing panels. 

 ρ [kg/m3] E [GPa] ν η Panel dimensions tmin [mm]  tmax [mm] 

PMMA 1275 4.5 0.35 0.06 1 m × 1 m 15 60 

Glazing 2500 62 0.22 0.01 1.25 m × 1.25 m 4 12 

 

The design targets practical applications related to single PMMA and glazing panels, that due to the varying 

thickness will be translucent but not fully transparent. The considered material parameters (mass density ρ, 

Young modulus E, Poisson ration ν, damping loss factor η), along with the panel dimensions and the range of 

variation [tmin, tmax] for the thickness are listed in Table 1. 

 

4 Optimization results: designed layouts 

The optimized layouts for PMMA and glazing panels are shown in Figures 3 and 4 respectively, while the 

corresponding values of the objective function β are listed in Tables 2 and 3. As previously mentioned, β 

directly relates to the width of the obtained frequency band with no eigenfrequencies: in the Tables also its 

reference values for 1/3-octave and octave bands are reported. Different disturbance frequencies fc have been 

considered for the designs, all in a relevant range for practical applications between 125 and 2000 Hz. 

The optimized layouts show how the algorithm is able to effectively modulate the thickness within the panel 

area, in order to properly tailor the stiffness and mass distributions and control the eigenfrequencies of the 

system. In particular, we see how the complexity in the geometric features described by the thickness 

distribution increases at higher target disturbance frequencies, as higher order modes need to be controlled 

with a more detailed modulation of the panel properties.  

Also, we see how the relative width of the obtained frequency band with no eigenfrequencies decreases as the 

target disturbance frequency increases: at higher frequencies, the frequency bands (i.e. 1/3-octave bands and 

octave bands) become wider, and therefore they involve a higher number of modes to be controlled. Even if 

this makes it more difficult to obtain a wide frequency band with no eigenfrequencies, for all the presented 

design cases at least around a 1/3-octave band with no eigenfrequencies around the disturbance has been 

obtained. 

(a) (b) 

(c) (d) 

Figure 3 – Optimized layouts for the PMMA panel: (a) fc = 250 𝐻𝑧, (b) fc = 500 𝐻𝑧, (c) fc = 1000 𝐻𝑧, (d) 

fc = 2000 𝐻𝑧. 
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Table 2 – Objective functions for the PMMA optimized layouts in Figure 3 

Layout (a) fc = 250 Hz (b) fc = 500 Hz (c) fc = 1000 Hz (d) fc = 2000 Hz 

𝛃(*) 0.429 0.323 0.227 0.120 

(*) β = 0.1225: 1/3-octave band with no eigenfrequencies, β = 0.4142: octave band with no eigenfrequencies 

 

 

 

Table 3 – Objective functions for the glazing optimized layouts in Figure 4 

Layout (a) fc = 125 Hz (b) fc = 250 Hz (c) fc = 500 Hz 

𝛃(*) 0.278 0.207 0.138 

(*) β = 0.1225: 1/3-octave band with no eigenfrequencies, β = 0.4142: octave band with no eigenfrequencies 

 

5 Sound transmission loss computation through the FE-SEA model 

Pushing eigenfrequencies away from the disturbance reduces the vibration response of the structure and 

therefore is effective in preserving the structural integrity. In the following we will also verify how this 

considered design objective allows to improve the sound insulation behaviour. 

The performances of the optimized layouts in terms of sound transmission loss (TL) are computed through the 

hybrid FE-SEA (Finite Element – Statistical Energy Analysis) modelling framework [4,7]: in this case the 

plate is modelled deterministically through finite elements to capture its vibration behaviour in full detail, 

while the sound fields in the source and receiving rooms are modelled as diffuse (SEA) subsystems. The diffuse 

sound fields in the transmission rooms and the deterministic plate model are coupled by employing the diffuse 

field reciprocity relationship [8], resulting in a full transmission suite (room-wall-room) model [4,9,10]. 

The sound transmission loss is computed as TL = 10 log 1/τ, where the sound transmission coefficient τ is 

defined as the ratio between the power flow from room 1 to room 2 through the panel and the incident sound 

power on the wall in room 1, and is computed from the so-called coupling loss factor η12 between the rooms. 

Although the sound transmission loss results to be a random quantity (as the sound fields in the rooms are 

random diffuse fields), only its mean (i.e., ensemble averaged) value will be of interest in order to predict the 

Figure 4 – Optimized layouts for the glazing panel: (a) fc = 125 Hz, (b) fc = 250 Hz, (c) fc = 500 Hz. 

(a) (b) 

(c) 
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mean sound insulation of the panel. The mean sound transmission loss will depend on the frequency and on 

the panel properties, i.e. its geometry, size and material. 

The sound transmission loss of the optimized layouts is shown in Figures 5 and 6, for PMMA and glazing 

panels respectively. Also, we show a comparison with reference uniform layouts that have the same mass as 

the optimized one. For all the considered cases both the harmonic behaviour and averaged curves in 1/3-octave 

bands are shown. 

In the plots we can clearly see how the modal behaviour of the panel around the disturbance frequency is 

suppressed in the optimized layouts, as resonance dips, associated with structural eigenfrequencies, are 

effectively pushed away from the disturbance. This introduces a flattening in the harmonic transmission loss 

curves for the targeted frequency ranges, with associated improvements in the sound transmission loss around 

5-10 dB with respect to the dip values. A flattened transmission loss curve increases also the robustness of the 

configuration to possible uncertainties in system parameters associated with the disturbance frequency and/or 

with the features of the structure, i.e. it reduces the probability that the disturbance frequency matches a 

resonance dip. 

An improvement in the sound transmission loss can be seen also when averaging the curves in 1/3-octave 

bands. This especially holds for PMMA panels: in this case the optimized plates show improvements around 

7 dB at the frequencies of the disturbance, when compared with the corresponding uniform plates. This kind 

of improvement is still present also for glazing panels, but results to be quantitatively lower. We motivate this 

by considering that the resonance dips in the glazing are more pronounced than in the PMMA, but also less 

(a) (b) 

(c) (d) 

Figure 5 – Sound transmission loss curves for the PMMA layouts: (a) fc = 250 Hz, (b) fc = 500 Hz, (c) fc =
1000 Hz, (d) fc = 2000 Hz. Red curves refer to the optimized panels, while blue curves refer to uniform 

panels with the same mass as the optimized ones. Solid lines refer to harmonic plots, while dashed lines refer 

to averaging in 1/3-octave bands. 
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wide in frequency, due to the low glazing damping properties (cf. Table 1). So we will have a different weight 

with respect to the PMMA when averaging the TL within 1/3-octave bands. Also, the admissible thickness 

range for the PMMA is bigger than the one for glazing, as for PMMA tmax = 4 ⋅ tmin and for glazing tmax =
3 ⋅ tmin. 

 

6 Conclusions 

In this paper, topology optimization has been applied to design PMMA and glazing single plate panels with 

improved vibroacoustic behaviour in specific frequency bands.  

The material thickness distribution within the panel area has been optimized in order to maximize the width of 

the frequency range with no structural eigenfrequencies around a specific narrowband disturbance. The 

optimization has been carried out relying on an in-vacuo mechanical finite element model to compute the 

structural eigenfrequencies, that allows for a computationally efficient design procedure. The performance of 

the optimized panels in terms of sound transmission loss have been a posteriori verified through a finite element 

– statistical energy analysis (FE-SEA).  

Different PMMA and glazing panels have been designed considering different target disturbance frequencies 

between 125 and 2000 Hz, obtaining at least a 1/3-octave band with no eigenfrequencies for all the considered 

design cases. The computation of the sound transmission loss shows how the proposed design methodology is 

(a) (b) 

(c) 

Figure 6 – Sound transmission loss curves for the glazing layouts: (a) fc = 125 Hz, (b) fc = 250 Hz, (c) fc =
500 Hz. Red curves refer to the optimized panels, while blue curves refer to uniform panels with the same 

mass as the optimized ones. Solid lines refer to harmonic plots, while dashed lines refer to averaging in 1/3-

octave bands. 
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effective in suppressing the modal behaviour of the panel around the disturbance, achieving a good robustness 

of the configuration with respect to uncertainties in the system parameters. In particular, transmission loss 

improvements of at least 5-10 dB have been obtained with respect to the resonance dips observed in uniform 

panels with the same mass of the optimized ones. 

The proposed approach can be extended towards the design of double plate panels, where the material 

distributions within each single leaf can be optimized to improve the modal behaviour of the fully coupled 

plate-cavity-plate system, and improve the associated vibroacoustic performance. 

 

Acknowledgements 

The presented research has been carried out within the framework of the ERC Starting Grant 714591 

VirBAcous. The authors gratefully acknowledge the financial support of the European Research Council 

(ERC).  

 

References  

[1] Li, Q., Wu, Q., Liu, J. et al. Topology optimization of vibrating structures with frequency band 

constraints. Struct Multidisc Optim 63, 1203–1218 (2021). 

[2] Van den Wyngaert, J., Schevenels, M., Reynders, E. Acoustic topology optimization of the material 

distribution on a simply supported plate. Proceedings of the 23rd International Congress on Acoustics, 

ICA 2019, 1208 – 1215 (2019). 

[3] Bendsoe M.P., Sigmund O., Topology Optimization, Vol. 95, Springer Berlin Heidelberg, Berlin, 

Heidelberg, 2004. 

[4] Reynders, E., Langley, R., Dijckmans, A., & Vermeir, G. A hybrid finite element - Statistical energy 

analysis approach to robust sound transmission modeling. Journal of Sound and Vibration, 333(19), 

4621-4636, 2014. 

[5] Wang F., Lazarov B.S., Sigmund O. On projection methods, convergence and robust formulations in 

topology optimization. Struct Multidiscip Optim 43(6):767–784(2011). 

[6] Svanberg, K., The method of moving asymptotes—a new method for structural optimization. Int. J. 

Numer. Meth. Engng., 24: 359-373 (1987). 

[7] Shorter P.J., Langley R.S., Vibro-acoustic analysis of complex systems, Journal of Sound and Vibration, 

288 (3), 2005. 

[8] Shorter P.J., Langley R.S., On the reciprocity relationship between direct field radiation and diffuse 

reverberant loading. J Acoust Soc Am. 117(1):85-95, 2005. 

[9] Decraene C., Dijckmans A., Reynders E., Fast mean and variance computation of the diffuse sound 

transmission through finite-sized thick and layered wall and floor systems, Journal of Sound and 

Vibration, Volume 422, 2018, Pages 131-145 (2018). 

[10] Reynders E., Van Hoorickx C., Dijckmans A., Sound transmission through finite rib-stiffened and 

orthotropic plates, Acta Acustica united with Acustica, Volume 102, Number 6, pp. 999-1010(12), 2016. 


