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Abstract 

Helmholtz resonators are widely accepted as narrowband low-frequency sound absorbers. In this study, with 

the help of deep neural network (DNN), an optimized design of acoustic metasurface comprising four 

inhomogeneous Helmholtz resonators is proposed. The absorption characteristics of the proposed structure are 

studied using electro-acoustic analogy based analytical formulations. The analytical method is compared 

against full-field finite element simulation results obtained from COMSOL Multiphysics. Further, DNN-based 

inverse design strategy is deployed to optimize the design of metasurface.  The obtained optimal design showed 

quasi- perfect sound absorption in the frequency range of 300-350 Hz with deep sub-wavelength thickness. 

The proposed design and optimization strategy are very promising for future needs in noise control 

engineering. 
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1 Introduction 

Low frequency noise is considered as one of the pervasive environmental pollutant. The attenuation of 

low frequency noise is essential, though it is very difficult due to its larger wavelength. Naturally occurring 

objects such as vegetations [1] and passive absorbers such as porous materials [2] are not efficient to mitigate 

low frequency noise. Even the resonant absorbers such as quarter wavelength resonators [3] or Helmholtz 

resonators [4] can’t absorb low-frequency noise over a broad range of frequency. In this context, it is necessary 

to propose a better low frequency sound absorber with broadband absorption characteristics. 

The still emerging field of acoustic metamaterials shed light into the research of effective low frequency 

noise abatement. Space-coiling type [5], membrane type [6] and resonator-based [7] structures are the common 

implementations of acoustic metamaterials. Recently, Wu et al. [5] designed and constructed a metamaterial 

absorber with microperforated panel and coiled up Fabry- Perot channels. Wang et al. [6] demonstrated 

effective low frequency noise elimination using membrane constrained acoustic metamaterial. Similarly, a 

compact acoustic metasurface comprising inhomogeneous Helmholtz resonators is also proposed for low 

frequency sound absorption [7]. However, the quest for a broadband low frequency absorber with reduced 

thickness still remains as a challenging task. 

In recent years, data-driven methods such as machine learning shows rapid developments in all fields of 

engineering and physics. Especially, deep learning techniques are widely used in inverse designing problems 

of nano photonics [8], electromagnetics [9] and vibration [10]. Recently, deep learning-based designing 
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methods are also started to use in acoustic problems. Among them, the inverse design methodology using deep 

neural network proposed in the previous work [11] needs special attention owing to its superior performance 

and excellent prediction capability. In this work also, the same inverse design strategy [11] is used to optimize 

the structure of the proposed acoustic absorber.  

In this study, the analytical and numerical examinations of a novel acoustic metasurface comprising 

inhomogeneous Helmholtz resonators is considered. Initially, the analytical scheme is established using 

equivalent medium theory and electro-acoustic analogy. Then the validity of the scheme is assured using full-

field finite element simulations. Later, using a deep neural network based inverse design scheme, an optimal 

design of metasurface absorber is accomplished. 

This paper is structured as follows: The geometric description of the metasurface is detailed in Section 2. 

The analytical methodology used for the determination of absorption coefficient of the metasurface is 

described in Section 3. The details of the numerical methodology are dealt in Section 4. Then the deep neural 

network based inverse design of the absorber is described in Section 5. Finally, the concluding remarks are 

detailed in Section 6. 

2 Geometric considerations of the metasurface  

In this study, the acoustic characteristics of a metasurface comprising four Helmholtz resonators with 

inserted neck (HRIN) is considered. The physical model of the proposed metasurface is given in Figure 1(a). 

HRIN is an altered configuration of traditional Helmholtz resonator, where the neck is totally inserted into the 

cavity. As shown in Figure 1(b) four such HRINs are parallelly arranged to build the metasurface. The 

schematic diagram of a single HRIN is shown in Figure 1(c). In order to achieve broadband noise mitigation 

in the low frequency regime, the geometric parameters of the proposed metasurface are inversely speculated 

using Deep Neural Network (DNN). The required dataset for the training purpose of DNN is generated using 

analytical model. The details of the analytical scheme are given in the following section. 

Figure 1 – (a) Physical model of the metasurface. (b) Top view of the metasurface and (c) schematic diagram 

of the HRIN, where 𝑙𝑁 is the neck length, 𝑙𝐶 is the cavity beyond neck length, 𝑟𝑁 = 𝑑𝑁/2 is the neck radius 

𝑟𝐶 is the cavity radius and 𝑟𝑑 is the radius of the metasurface structure. (d) Equivalent electro-acoustic circuit 

of metasurface, where 𝑍𝐻𝑅𝑖 is the acoustic impedance of the 𝑖𝑡ℎHRIN. 

(d) (b) (c) 

(a) 



 

 

 3 

3 Analytical methodology 

The absorption characteristics of the proposed metasurface is analytically evaluated using the electro-acoustic 

analogy.  The acoustic impedance of a single HRIN depends on normalized specific acoustic resistance (𝑅𝐻𝑅) 

and normalized specific acoustic reactance (𝑋𝐻𝑅). Note that, the normalized specific acoustic resistance [12], 

 

𝑅𝐻𝑅 =
√8𝜂𝜌𝜔(

𝑙𝑁
𝑑𝑁

+1)

𝜀𝑇𝜌𝑐
,      (1) 

 

where 𝑙𝑁 is neck length, 𝑑𝑁 is diameter of neck, 𝜂 is the dynamic viscosity of air, 𝜌 is the density of air, 𝑐 is 

the velocity of sound in air, 휀𝑇  is the perforation ratio and 𝜔 is angular frequency. Here, 휀𝑇 = 𝑆𝑛/𝐴0 where, 

𝑆𝑛 is the cross-sectional area of neck and 𝐴0 is the cross-sectional area of cavity. 

Also, the normalized specific acoustic reactance is [12], 

 

𝑋𝐻𝑅 =
𝑘𝑙𝑒

𝜀𝑇
−

1

𝑘𝑙𝑅𝐶
,      (2) 

 

where 𝑙𝑒 = (𝑙𝑁 + 𝛿), is the effective neck length, in which 𝛿=0.85𝑑𝑁, is the end correction of neck and 

𝑙𝑅𝐶=𝑙𝑁 + 𝑙𝐶-휀𝑇𝑙𝑒 is the modified cavity length. 

Thus, the acoustic impedance of a HRIN (𝑍𝐻𝑅) is, 

 

𝑍𝐻𝑅 = 𝑍0(𝑅𝐻𝑅 + 𝑗𝑋𝐻𝑅),     (3) 

 

where, 𝑍0 = 𝜌𝑐 is the acoustic impedance of air. 

The metasurface proposed in this study comprises of four Helmholtz resonators which are parallelly connected. 

According to the electro-acoustic analogy represented in Figure 1(d), the total acoustic impedance of the 

metasurface (𝑍𝑡) can be formulated as 

 

𝑍𝑡 =
1

∑
𝑆𝑖

𝑍𝐻𝑅𝑖

4
𝑖=1

 ,       (4) 

 

where, 𝑆𝑖 = 
𝜋𝑟𝐶𝑖

2

𝜋𝑟𝑑
2   is the area ratio of HRIN. From 𝑍𝑡 , the absorption coefficient of metasurface (α), is obtained 

as 

𝛼 = 1 − |
𝑍𝑡−𝑍0

𝑍𝑡+𝑍0
|

2
,      (5) 

 

4 Numerical model 

In order to validate the analytical model, full-field finite element simulations are carried out in COMSOL 

Multiphysics software.  The frequency domain interface with pressure acoustics module is used to analyse the 

sound propagation through the metasurface. The sound pressure distribution inside the model is governed by 

Helmholtz equation of the form, 

 

𝛻.  (
1

𝜌
(𝛻𝑝)) +

𝑘2𝑝

𝜌
= 0,     (6) 

 

where p is the acoustic pressure and k is the wave number. The thermo-viscous losses inside the neck have to 

be modelled separately. For this, narrow region feature under pressure acoustic module is chosen. The walls 
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of the metasurface are modelled as perfectly rigid and the inside fluid medium is chosen as air. The domains 

are discretized using tetrahedral element and the maximum element size is chosen as λ/20, where λ is the 

wavelength corresponding to highest frequency of interest. The narrow regions such as necks are modelled 

using very fine mesh of high resolution. Then by using two-microphone impedance tube method [4, 13] the 

absorption characteristics of the metasurface is determined over a frequency regime of 100-500 Hz.  

 Initially the absorption characteristics of a metasurface absorber comprising four inhomogeneous 

HRINs are analyzed using numerical and analytical schemes. The dimensions chosen for modelling the 

absorber are given in Table 1. The comparison of the analytical and numerical results is given in Figure 2, 

which shows good agreement. The absorption characteristics of the metasurface shows four absorption peaks 

corresponding to the resonance frequencies of the individual HRINs. Indeed, each HRIN has almost perfect 

absorption and they spread within the frequency regime of 250-400 Hz.  

 The present study mainly focused to propose the design of a metasurface, which has quasi-perfect 

sound absorption in the frequency regime of 300-350 Hz. For this, deep neural network based inverse design 

strategy is used. The details of the inverse design using deep neural network (IDDN) are detailed in the 

following section.  

Table 1 – Geometric parameters of the metasurface absorber with 4 different HRINs. For all HRINs the 

parameters kept constant are 𝑙𝑁𝑖=35 mm, 𝑙𝐶𝑖=5 mm and 𝑟𝐶𝑖=18 mm, where subscript ‘i’ corresponds to the 

number of HRIN. The radius of metasurface 𝑟𝑑=50 mm. 

Number of HRIN  𝑑𝑁𝑖  (mm) 

1 7 

2 8 

3 

4 

9 

10 

 

 
 

Figure 2 – Sound absorption characteristics of metasurface from analytical and numerical simulations. The 

dimensions of the metasurface are given in Table1. 
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5 Inverse design of metasurface 

To accomplish the optimum dimensions of the metasurface, IDDN scheme is deployed. IDDN scheme is 

a data driven prediction technique.  For this large amount of data is required, which is generated using 

analytical scheme. Using the generated data, the IDDN maps the relation between outputs and inputs. It has 

three main stages – training, validation and testing. Once the suitable deep neural network is created, it will be 

trained and validated using available dataset. After the successful completion of these steps the performance 

of the network on a mutually exclusive test data is conducted. If the performance of the model is satisfactory 

on test data, it is deployed for required application. The detailed explanation of the IDDN scheme is available 

in the previous work [11]. 

Dataset generation 

 Here, IDDN is used to map the relation between absorption characteristics and corresponding 

geometric parameters. When a desired absorption spectrum is given to the trained neural network it will predict 

the corresponding geometric parameters. In this study, the desired absorption characteristics of the metasurface 

will give as the inputs and the neural network will predict the geometric parameters as the outputs. The dataset 

required for the IDDN scheme is generated using analytical methodology. Using Eqn. (10) the absorption 

coefficients corresponding to an arbitrary set of nine geometrical parameters are computed over a frequency 

range of 0-500 Hz. Neck radii and neck lengths of HRINs as well as the radius of the metasurface are randomly 

varied for the data generation. During data generation all other physical and material parameters are kept 

constant. The dimensions chosen for the data generation are given in Table 2. To maintain a compact size, the 

total thickness of the metasurface is limited to 40 mm. Hence the maximum neck length chosen for training is 

fixed as 35 mm and cavity beyond neck length is chosen as 5 mm, while all other geometric parameters are 

chosen according to the frequency of interest. Using custom python scripts, a total of 262144 data samples are 

generated. Among them 80% of data is assigned for training and remaining data is used for validation. Also, a 

mutually exclusive test set of 2000 samples are generated for testing. 

Table 2 – Dimensions chosen for the dataset generation for the prediction of geometrical parameters of 

metasurface. 

Parameters Limit of random 

values (mm) 

𝑟𝑁𝑖 2-5 

𝑙𝑁𝑖 

𝑟𝑑 

20-35 

45-60 

  

5.1 Deep neural network architecture 

The architecture of the custom DNN model used for the inverse prediction is detailed in this section. As 

shown in Figure 3, the DNN architecture takes absorption coefficients corresponding to 0-500 Hz as the inputs 

and it predicts the geometric parameters as outputs. For better performance and improved prediction accuracy 

the value of 𝑟𝐶 is given as an additional input along with 500 absorption coefficients. The input data is a one-

dimensional array. To process such a data 1D convolutional layers are appropriate. Hence initial layers are 

chosen as 1D convolutional layers and dense layers are used for complex feature extraction. In between 1D 

convolution layers max pooling layers are used for reducing the dimensions of feature map. To prevent the 

model from overfitting, Dropout layers are used in between dense layers. The complete details of the 

architecture are given in Table 3. 
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Figure 3 – Schematic representation of DNN architecture. 

 

Table 3 – Details of layer parameters of the proposed DNN architecture. 

 

Layer name Layer parameters Output shape 

Conv 1D 64 × 3, Strides = 1, Input shape = (501, 1), 

Activation = ReLU 

499x64 

Max pooling 1D Pool size=3, Strides=1 166x64 

Conv 1D 32 × 3, Strides = 1, Activation = ReLU 164x32 

Max pooling 1D Pool size=3, Strides=1 54x32 

Flatten ----- 1728 

Dense 1024, Activation = ReLU, Dropout rate =0.2 1024  

Dense 1024, Activation = ReLU, Dropout rate =0.1 1024 

Dense 512, Activation = ReLU 512 

Dense 256, Activation = ReLU 256 

Dense 128, Activation = ReLU 128 

Dense 64, Activation = ReLU 64 

Dense 32, Activation = ReLU 32 

Dense 8, Activation = ReLU 8 
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The model is trained using Adam optimizer for 1000 epochs with an initial learning rate of 0.001. The learning 

rate is decreased in steps up to 10−6. The batch size is chosen as 1000 and the mean absolute error (MAE) is 

chosen as the loss function. MAE is defined as, 

 

MAE =
1

𝑛
∑ |𝑦𝑗 − 𝑦�̂�|𝑛

𝑖=1 ,      (7) 

 

where 𝑦𝑗 is the actual value, 𝑦�̂� is the predicted value, and ‘n’ is the number of data samples. When MAE 

between the predicted geometric parameters and the actual geometric parameters is reduced to 0.2 in the test 

set, the training process of IDDN is stopped and the model is saved. Using the saved model further predictions 

are done. 

5.2 Prediction results 

After successful training and testing the DNN model is used to predict the geometric parameters of 

metasurface having desired absorption characteristics. For instance, two such desired absorption spectrums 

(blue dashed lines in Figure 4) are randomly generated (for S1 & S2) and passed through the neural network. 

In addition to the absorption spectra the value of 𝑟𝑑 is also given as the input and it is set as 50 mm. Hence the 

IDDN will predict the geometric parameters of the metasurface having 50 mm radius and desired absorption 

spectra. The prediction results of IDDN scheme are given in Table 4. Using the predicted parameters, the 

absorption spectra is recreated using the analytical methodology and it is compared against desired spectrum. 

The obtained frequency response shows good agreement with the desired spectrum. 

 
(a) 

 
(b) 

Figure 4 – Comparison between the desired absorption characteristics and the absorption characteristics 

generated using the geometric parameters predicted by IDDN method for metasurface models (a) S1 and (b) 

S2. 
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Table 4 – Predicted dimensions of metasurface models S1 and S2. For both models, 𝑙𝐶𝑖 = 5 mm, 𝑟𝐶𝑖
 = 18 mm 

and 𝑟𝑑 =50 mm 

Metasurface model 𝑑𝑁𝑖 (mm) 𝑙𝑁𝑖 (mm) 

S1 (90% absorption in 350-400 Hz.) 7.6, 8.46, 8.4, 9.2 25.63, 30.6, 32.1, 30 

S2 (90% absorption in 300-350 Hz.) 7.1, 8.1, 7.1, 8.3 26.2, 34.5, 31.5, 33.3 

6  Conclusions 

In this study, with the help of deep neural network, optimized design of acoustic metasurface consisting of 

four inhomogeneous Helmholtz resonators is proposed. For that a novel design of acoustic metasurface is 

proposed and its absorption characteristics are evaluated using analytical scheme. The analytical scheme is 

validated using full- field finite element simulations. Then, using IDDN scheme the geometric parameters of 

the metasurface are predicted and optimal designs are proposed. The conclusions arrived from this study are 

listed below. 

• The proposed metasurface absorber consisting of four inhomogeneous Helmholtz resonators exhibits 

excellent low frequency sound absorption. 

• Using the IDDN method, two metasurface models with quasi-perfect sound absorption (more than 

85%) is proposed. The proposed models, S1 and S2, exhibit broadband sound absorption in the 

frequency range of 300-350 Hz and 350-400 Hz respectively. 

• The proposed metasurfaces are compact, and their overall thickness is 4 cm only, which is deep sub-

wavelength in scale (λ/25, for f=350 Hz). 

The proposed metasurface models as well the artificial neural network based inverse design strategy has 

potential applications in noise control engineering. 
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