
 

 

 

 

 

 

1 

Reduction of low-frequency vibration of joist floor structures by 

multiple dynamic vibration absorbers: comparison of experimental 

and computational results 

Yi Qin 1, Jin Jack Tan1,2, Maarten Hornikx 1 

1 Department of the Built Environment, Eindhoven University of Technology, Eindhoven, the Netherlands 
2 Sorama BV, Eindhoven, the Netherlands  

Abstract 

Typical solutions to reduce excessive floor vibration and its radiated sound are increasing mass, stiffening the 

structure, or adding a floating floor. However, these methods may not be effective on lightweight floors in 

reducing low-frequency impact sound. 

The use of dynamic vibration absorbers is an attractive approach to reduce the response of the structure at its 

natural frequency. For studying the effect of multiple dynamic vibration absorbers and designing optimal 

solutions for various configurations, an efficient modelling approach is desired. 

A model is proposed for this purpose that utilizes the thin plate theory for the floor and the Timoshenko beam 

theory for the joists. In addition to the joists’ bending motion, the model has also included the joists’ rotation 

and approximates the plate-beam interface connection condition. To verify the appropriateness of the model, 

measurements on a scaled joist floor structure have been carried out. The joist structure in the test is made of 

medium-density fiberboards, while the absorbers are made of steel springs and mass blocks. A good agreement 

of the impact of vibration absorbers is shown in the modal assurance criterion (MAC) and the comparison of 

the transfer functions. 

Keywords: vibration, joist floor, vibration absorber, low frequency, experiment. 

1 Introduction 

Annoyance due to impact sound from floors is related to the excessive vibration of the floor. For the sake of comfort 

and health, people's exposure to impact noise and floor vibration should be avoided [1, 2]. To achieve this goal, an 

adequate vibration control to the floor is needed. 

 

Typical solutions to reduce the floor vibration are to redesign and modify the floor systems by increasing the 

thickness and thereby the mass, stiffening the structure, and adding an elastically-supported floor covering [3, 4]. 

The first two methods modify the dynamics of the system such that the excitation is less effective on floor responses 

and the dominant floor natural frequencies are shifted away from the most problematic frequency range, while the 

last method decouples the vibrations from the top floor to the base structure thereby reducing the radiated sound 

from the floor. However, improving the stiffness is hard to implement on lightweight floors. The approach using a 

floating floor or additional masses produces drawbacks such as the weight increase and lower fundamental 

frequencies, leading to potential worse vibration conditions in the low frequency range [4, 5]. 

 

The idea of a passive vibration absorber emerges in structural engineering applications since its introduction in 1911 

by [6]. By tuning the spring, mass, and damping, the natural mode of a single degree of freedom (SDOF) the host 
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system can be effectively suppressed, such that the structural vibration can be reduced (Figure 1). Vibration absorbers 

can be installed more cheaply than structural stiffening and are sometimes the only approach of vibration control in 

existing structures [7]. 

 

 

Figure 1 – Example of frequency response curves of a SDOF vibration absorber. 

In the last two decades, applying vibration absorbers to control the floor vibrations have been popularly studied 

theoretically. By assuming the floor and the absorber as single-mode systems, the vibration of the coupled structure 

is simplified as a two-degree-of-freedom system [8, 9]. This simple method allows an analysis on suppressing the 

fundamental mode of a floor structure. For controlling the vibration of a more complex floor by absorbers, using 

FEM to solve the governing partial differential equations does provide more detailed simulations. However, the 

calculation may be tedious due to complex and detailed floor geometries [10, 11]. Additionally, analytical models 

of rectangular plates with classical boundary conditions provide insight into the low frequency bending vibrations 

and may be easily coupled with the spring-mass models. Therefore, they are frequently applied in parametric studies 

and optimizations of the absorber on a plate [10, 12, 13, and 14]. 

 

In contrast, in only a few studies measurements of absorbers have been conducted [15, 16], and even fewer on 

measurements of absorbers applied to floor structures [7]. Also, most of these experiments were carried out 

for the applications of a single absorber rather than distributed multiple absorbers. 

 

In this paper, the effect of multiple vibration absorbers on the vibration of a lightweight joist floor is 

investigated. An experiment was conducted on a scaled joist structure with absorbers made of steel springs 

and mass blocks. Low-frequency vibration results are compared with those calculated by an analytical model 

based on a modal superposition method. The aim of this research is to evaluate the applicability of the 

analytical model in predicting the effect of the multiple vibration absorbers on the vibration field of joist floors.  

 

The paper is organized as follows: Section 2 presents the setup of the experiment and test results, and Section 

3 presents the formulation and validation of the analytical prediction model. Section 4 presents the results and 

comparisons are made between the predicted and measured vibration results. In Sections 5 and 6, some 

discussions and conclusions are given. 

2 Experimental analysis 

The experiment took place in the acoustics laboratory of Eindhoven University of Technology. Figure 2 shows 

the scaled joist floor structure used in this research. The basic structure is fabricated by a 1m x 1m x 9mm 

medium-density-fibreboard (MDF) plate supported by 7 MDF beams with a cross section of 22 x 70mm. The 
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beams are evenly spaced in x-direction with a distance of around 135mm. Each beam is connected to the plate 

by 9 screws (spaced 135mm from each other). 

 

Figure 2 – Top and front view of the scaled joist floor. The dimensions are in [mm]. 

In the experiment, the structure was suspended by elastic ropes so as to obtain freely-supported boundary 

conditions. The normal vibrations of the top plate, excited by impact hammer BK 8202, are measured at 17x9 

positions by accelerometers PCB 333B30. The signals were captured by a National-Instruments acquisition 

system (NI 9234 and cDAQ-9178) for 7 seconds with a sampling frequency of 51200Hz, and then the fast 

Fourier transform (FFT) was applied in Matlab for a frequency range up to 25.6 kHz. 

 

 

  
Figure 3 – Setup of the experiment on the joist 

structure. 

Figure 4 – Locations of the force excitation and 

accelerometers. 

2.1 Mechanical properties of the wooden components 

The densities of the wooden components were determined by weighting them separately. The Young’s moduli 

of both plate and beams are assumed to be homogeneous and were obtained by performing dynamic vibration 
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tests. In the measurements, the components were placed on a soft porous material to obtain a freely-supported 

condition, as shown in Figures 4 and 5. A 0.25 Poisson’s ratio borrowed from [17, 18] is given to all the MDF 

components. The Young's moduli of the plate and beams were calibrated by using finite element models 

solving the equations of linear elasticity. The values of the Young's moduli are finally determined by matching 

the simulated and measured natural frequencies of the first bending modes (the 22.3Hz mode for the plate and 

the around 120Hz mode for the beams). The loss factors were extracted from the measured transfer functions 

by using the half-power bandwidth approach [19, 20]. The properties of the wooden components are listed in 

Table 1.   

 

  
Figure 5 – Measurement setup of the dynamic 

property test on the MDF plate. 

Figure 6 – Measurement setup of the dynamic 

property test on the MDF beam. 

 

Table 1 – Mechanical properties of the wooden components identified by dynamic vibration tests 

Young’s modulus Density 

kg/m3 

Loss factor 

 GPa 

Plate 3.1 669.6 0.052 

Beam 1 1.9 583.2 0.045 

Beam 2 2.1 565.2 0.039 

Beam 3 2.1 559.2 0.038 

Beam 4 2.1 571.2 0.081 

Beam 5 2.1 577.2 0.078 

Beam 6 2.4 589.2 0.088 

Beam 7 2.1 577.2 0.055 

 

2.2 Design and fabrication of the vibration absorber 

Eight vibration absorbers are used in the measurement in total. Each absorber consists of three parts welded to 

each other: a steel mass block, a steel coil spring, and a hex nut used to connect with the joist structure (Figure 

7).  

 

The natural frequencies of the absorbers are designed to be 70Hz, corresponding to the bending modes of the 

joist structure at that frequency. The absorbers are characterized by spring constant ka and mass ma. Firstly, the 

dimensions of the coil springs were calculated by 

 

𝑘𝑎 =
𝐺𝑑4

8𝑛𝐷3
 (1) 
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where G is the transverse elastic modulus of the spring material, d is the wire diameter, n is the number of the 

active coils and D is the mean coil diameter (outer diameter - wire diameter). Then, by changing ma, the natural 

frequency of the absorbers can be tuned to the desired frequency. 

 

A finite element model of the vibration absorber was made in COMSOL multi-physics. The model solves the 

linear elasticity equation and assumes the materials are homogeneous. The dimensions of coil spring (D, d and 

n) are given as 12mm, 2mm and 6, and the dimension of the block is 30 x 30 x 19mm. The Young's modulus, 

Poisson's ratio and the density of steel are given to the whole absorber as 205Gpa, 0.28, and 7850kg/m3. The 

top surface of the hex nut is set to be fixed and the low-frequency modal patterns of the vibration absorber are 

analysed. 

 

The desired 70 Hz resonance in the vertical direction was found in the finite element model, as shown in Figure 

8. However, except for the resonance around 70 Hz, some mode types have been observed in the FE model, 

such as a rotational mode at 33.5 Hz and two swing modes, axial and diagonal, at 13.7 and 115Hz. 

 

 

Figure 7 – Setup of a single 

vibration absorber. 

Figure 8 – Natural modes of the vibration absorber simulated by 

COSMOL. 

 

These modes are also observed in an impact-response test on the fabricated vibration absorber. In the test, the 

vibration absorber is fixed on the hex nut by a pressure clamp. An accelerometer is attached on the bottom 

surface of the mass block to measure the vertical vibrations excited by the hammer impacts, as shown in Figure 

9. In the result, a peak was observed around 70 Hz, which represents the designed mode of the absorber (Figure 

10); two other peaks were found at 14 and 115 Hz, which are most likely due to the axial and diagonal swing 

modes. The rotational mode is not clearly shown in the figure, as the horizontal movements cannot be collected 

by the used sensor. 

 
 

Figure 9 – Measurement setup of 

the absorber's natural frequencies. 

Figure 10 – Measured frequency response of the vibration absorber 

system. 
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To achieve an obvious effect on the floor's response, the vibration absorbers were installed in the area having 

the highest displacement at the target frequency. As shown in Figure 11, the structure has a high displacement 

along the central beam at the 70Hz mode. Therefore, the absorbers are allocated and distributed in the area 

along the central beam (Figure 12). The averaged values of the parameters measured from 8 absorbers are 

listed in Table 2. 

 

 
Figure 11 – 70Hz Mode shape of the structure and 

positions of the vibration absorbers. 

Figure 12 – Setup of the vibration absorbers 

installed on the joist structure. 

 

 

Table 2 – Mechanical properties of the wooden components identified by dynamic vibration tests 

Components 
Spring constant 

ka, N/m 

Mass 

ma, kg 

Loss factor 

ηa 

Natural 

frequency, 

fa, Hz 

Absorber 2.55e4 0.121 0.01 73 

 

3 Numerical analysis 

 
Figure 13 – Schematic representation of the joist 

structure with SDOF vibration absorbers. 

 

Figure 13 illustrates the analytical model of the joist floor with the vibration absorbers. The structure is 

considered as a thin ribbed plate lying in the x–y plane, and the vibration absorbers are sketched as SDOF 

mass-spring resonators. The prediction model of the joist structure is based on the modal superposition model.  

3.1 Analytical model of the joist floor with free boundary condition 

To calculate the vibration displacement of the joist floor structure, firstly, the coefficients of the modal 

displacement of the structure are computed by 

  (𝐊𝐟𝐥𝐨𝐨𝐫 − 𝐌𝐟𝐥𝐨𝐨𝐫𝜔2)𝐮𝐟𝐥𝐨𝐨𝐫 = 𝐅 (2) 
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where Kfloor and Mfloor are the stiffness and mass matrices of the plate. ufloor is the coefficient vector of the 

modal displacement. The vibration displacement of the joist floor is calculated by 

 

𝑤𝑓𝑙𝑜𝑜𝑟(𝑥, 𝑦) = ∑ ∑ 𝑢𝑓𝑙𝑜𝑜𝑟(𝑚, 𝑛)𝜙𝑚(𝑥)𝜓𝑛(𝑦)

𝑀

𝑚=1

𝑁

𝑛=1

 (3) 

 

in which ϕm and ψm are the mode shape functions of the floor mode (m,n) along x and y directions. 

 

For the joist floor, the bending motion of the plate are combined with the bending and torsional motions of the 

beams by defining the Kfloor and Mfloor as 

 

𝐊𝐟𝐥𝐨𝐨𝐫 = 𝐊𝐩 + 𝐊𝐛,𝟏 + 𝐊𝐛,𝟐 (4) 

𝐌𝐟𝐥𝐨𝐨𝐫 = 𝐌𝐩 + 𝐌𝐛,𝟏 + 𝐌𝐛,𝟐 (5) 

where Kp and Mp are the stiffness and mass matrices of the plate, Kb,1, Kb,2, Mb,1, Mb,2 are the stiffness and 

mass matrices of the beams for the bending (index 1) and torsional motion (index 2).  

 

The matrices Kp and Mp of a free-free rectangular thin plate are given by [23], the bending stiffness matrix 

Kb,1 and mass matrices Mb,1 of S beams are defined as [23], and the torsional stiffness matrix Kb,2 and mass 

matrices Mb,2 are defined as [24] 

3.1.1 Mode shape function for a plate with free boundary condition on four edges 

To be consistent with the measurement setup, the model of the joist floor contains free boundary conditions 

for all edges of the plate. The mode shape functions of the plate can be approximated by [21, 22] 

𝜙𝑚(𝑥) = √
2

𝑙𝑥
𝜑𝑓(𝑥),   𝜓𝑛(𝑦) = √

2

𝑙𝑦
𝜑𝑓(𝑦) (6) 

in which φf is the mode shape function of the beam and the subscript f denotes the free boundary condition. 

The function φf is described as 

 

𝜑𝑓,0(𝑥) = √1/2, 

𝜑𝑓,1(𝑥) = √3/2 (1 −
2𝑥

𝑙𝑥
), 

𝜑𝑓,2,4,6…(𝑥) = 𝑐𝑜𝑠 [𝑘𝑖 (
𝑥

𝑙𝑥
−

1

2
)] + 𝑎𝑖𝑐𝑜𝑠ℎ [𝑘𝑖 (

𝑥

𝑙𝑥
−

1

2
)], 

𝜑𝑓,3,5,7…(𝑥) = 𝑠𝑖𝑛 [𝑘′𝑖 (
𝑥

𝑙𝑥
−

1

2
)] + 𝑎′𝑖𝑠𝑖𝑛ℎ [𝑘′𝑖 (

𝑥

𝑙𝑥
−

1

2
)], 

(7) 

where 

𝑎𝑖 =
𝑠𝑖𝑛 (𝑘𝑖/2)

𝑠𝑖𝑛ℎ (𝑘𝑖/2)
,       𝑎′𝑖 =

𝑠𝑖𝑛 (𝑘′𝑖/2)

𝑠𝑖𝑛ℎ (𝑘′𝑖/2)
 (8) 

 

and the constants ki and k'i are given in Table 3. 

Table 3 – Constants ki and k'i for Equation 7, r=3,4,5... 

k2=4.7300 

k4=10.9956 

k6,8,10... =(4r − 1) π/2 

k'3 =7.8532 

k'5 =14.1372 

k'7 ,9,11... =(4r + 1) π/2 
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3.1.2 Interface connection between plate and beams 

The analytical model assumes the beams to bend along their neutral planes and the displacements on their 

neutral planes are coupled with that of the plate, as shown in Figure 14(a). However, in a real joist floor, the 

plate and the beams are connected on their physical interfaces, as shown in Figure 14(b). This type of 

connection will lead to an unevenly distributed stress on the cross section when the bending happens in the 

structure, thus an up-shift of bending axis of the beam has to be accounted for in the bending motion [25]. 

 

 
Figure 14 – Plate-beam connections and the neutral plane of the joist structure. 

 

To approximate the effect of the interface connections, a revised second moment of inertia of the beam, I'b, 

with a shifted bending axis value, z', is introduced into the model based on the parallel axis theorem [26]. The 

equation for the revised second moment of inertia is given by 

 

𝐼′𝑏 = 𝐼𝑏 + 𝐴𝑏𝑧′2 (9) 

 

In this research, the plate and the beams are firmly connected by the screws. A z'=0.5hb is applied for the 

bending modes n=3,4…N of the beams, where hb is the height of the beam. The original Ib is still used for the 

first two rigid-body-motion modes (n=1,2). 

3.2 Numerical validation of the analytical model by finite element models 

The analytical model was validated by comparing with a finite element model made in the COMSOL multi-

physics software. The model was made of a 2D plate solving the Mindlin plate theory and 3D beams solving 

linear elasticity equations. In the analytical model, both the bending waves and the torsional waves of the 

beams were considered (Kfloor=Kp+Kb,1+Kb,2 and Mfloor= Mp+Mb,1+Mb,2), and the beam's second moment of 

inertia was calculated by Equation 24 with z'=0.5hb for the modes n>3.   

 

The floor structure was assumed to be excited simultaneously at 2 impact positions, and the mobility at 17 x 9 

receiving positions were calculated and root-mean-squared for the comparison, see Figure 15. Two results 

show a generally good agreement in Figure 16. 
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Figure 15 – Geometry of the 

finite element model.  

Figure 16 – Result of the averaged mobility. The small map shows 

the impact (dots) and the receiving position (cross signs). 

3.3 Modelling the joist floor with vibration absorbers 

The vibration absorbers are modelled as SDOF mass-spring systems. The displacements of the absorbers, wa.r, 

are coupled with the motion of joist structure wfloor,r at the attaching positions (xa,r , ya,r). The displacement of 

the floor at the position of the absorber r can be represented by   

 

𝑤𝑓𝑙𝑜𝑜𝑟,𝑟 = ∑ ∑ 𝑢𝑓𝑙𝑜𝑜𝑟(𝑚, 𝑛)𝜙𝑚(𝑥𝑎,𝑟)𝜓𝑛(𝑦𝑎,𝑟)𝑀
𝑚=1

𝑁
𝑛=1 . (10) 

 

The equation for coupling the motions is expressed as 

∑ ∑ (𝐾𝑓𝑙𝑜𝑜𝑟 − 𝑀𝑓𝑙𝑜𝑜𝑟𝜔2)

𝑀

𝑚=1

𝑁

𝑛=1

𝑢𝑓𝑙𝑜𝑜𝑟 + ∑ 𝑘𝑎,𝑟(1 + 𝑗𝜂𝑎,𝑟)(𝑤𝑎,𝑟 − 𝑤𝑓𝑙𝑜𝑜𝑟,𝑟)

𝑅

𝑟=1

= 𝐹， 

 

(11) 

𝑚𝑎,𝑟𝜔2𝑤𝑎,𝑟 + 𝑤𝑎,𝑟(1 + 𝑗𝜂𝑎,𝑟)(𝑤𝑓𝑙𝑜𝑜𝑟,𝑟 − 𝑤𝑎,𝑟) = 0， 𝑟 = 1,2 … 𝑅, (12) 

 

in which ka.r, ma.r and ηa.r are the spring constant, mass and loss factor of the rth vibration absorbers, and R is 

the number of the absorbers. 

 

By organizing the properties of the absorbers in a vector form as 

 

𝐊𝒂 = [𝑘𝑎,1(1 + 𝑗𝜂𝑎,1) … 𝑘𝑎,𝑅(1 + 𝑗𝜂𝑎,𝑅)],       𝐌𝐚 = [𝑚𝑎,1 … 𝑚𝑎,𝑅], 
(13) 

 

and defining a coupling matrix 

 

𝚽𝒂 = [… 𝚽𝒂,𝒏 … ],       𝚽𝒂,𝒏 = [𝜙𝑚(𝑥𝑎,𝑟)𝜓𝑛(𝑦𝑎,𝑟)]
𝑅×𝑀

,     𝑚 = 1,2 … 𝑀, 𝑛 = 1,2 … 𝑁, (14) 

 

the coupled motion is solved in matrix form as 

 

([
𝐊𝒇𝒍𝒐𝒐𝒓 −𝚽𝒂

𝑇𝐊𝒂

−𝐊𝒂
𝑇𝚽𝒂 𝑑𝑖𝑎𝑔(𝐊𝒂)

] − [
𝐌𝒇𝒍𝒐𝒐𝒓 𝟎

𝟎 𝑑𝑖𝑎𝑔(𝐌𝒂)
]) [

𝐮𝐟𝐥𝐨𝐨𝐫

𝐰𝐚
] = [

𝐅
𝟎

], 

 

(15) 

where wa = [wa,1 … wa,R]T. 
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4 Results of the measurements and the prediction model 

Figure 17 shows the measured mobility of the joist structure with and without vibration absorbers. The mobility 

values are root-mean-squared averaged among the positions described in Figure 4. From the figures, it can be 

observed that the absorbers lead to a large change in the structure vibration near 70Hz, while the changes in 

other frequency ranges are small. Comparing to the impacts far from the absorbers (Figure 17c and 17d), the 

floor mobility is reduced more significantly when the impact position is close to the area of the absorbers 

(Figure 17a and 17b). Due to the absorbers' low damping, the vibrational energy at the target structure mode 

is not much dissipated by the absorbers but rather distributed to the frequency ranges surrounding the target 

frequency. Thereby two peaks at around 65 and 88 Hz can be observed in the figure. For the other modes of 

the absorber at 13.7, 33.5, and 115Hz (Figure 8), no significant changes of the mobility were found in the 

figures.   

 

 
Figure 17 – Averaged mobility of the scaled joist floor with and without vibration absorbers. The small 

maps show the impact position as ’black dot’ and absorber’s position as ’blue crosses’. 

  

In Figure 18, the MAC values between the experiment and simulation were calculated and compared for the 

first 18 floor modes (up to about 190 Hz). The values show a reasonable correlation between the measured and 

predicted results. Figure 19 and 20 display some identified mode shapes of the joist floor. The measured and 

the predicted modes have similarities in both the mode shapes and the natural frequencies. 
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Figure 18 – MAC values between the measurement and the analytical model of the joist structure. 

 
Figure 19 – Measured mode shapes and natural frequencies of the scaled joist floor. 

 
Figure 20 – Simulated mode shapes and natural frequencies of the scaled joist floor. 

 

Comparisons were also made between the mobility of the joist structure with and without the vibration 

absorbers (Figure 21). In general, the results from the analytical model are in a good consistency with the 

results from the experiments. When the impact and receiver are located close to the centre of the floor, the 

results show fewer modes and appear to be more consistent with each other than for scenarios where the 

distance between excitation and receiver positions is larger. 
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Figure 21 – Mobility of the scaled joist floor. The small maps show excitation position 'black dot', receiver 

position 'black circle' and vibration absorber's position 'blue crosses'. 

The model also gives an accurate prediction of the obvious change in floor vibration pattern around 70 Hz due 

to the absorbers. As it is difficult to control the fabricated vibration absorbers to have exactly the same natural 
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frequency, the experimental results show some fluctuations around 70Hz. The vibration absorbers have little 

effect on frequencies other than those around their natural frequency. 

 

Lastly, the reduction of floor vibration level in one third octave band averaged over all positions was compared 

between the predictions and measurements, see Figure 22. The predicted result shows a similar trend as the 

measured result, but still a 3 dB deviation exists between the two results in the 63Hz band. For the lower 

frequency bands, the level reductions are more sensitive to the single mode due to the narrower bandwidths. 

For example, in the 16 Hz band, a large reduction in vibration level occurs. Looking at Figure 21, it can be 

explained by a frequency shift of the mobility when comparing measured and modelled results. 

 

 
Figure 22 – Reduction of the floor velocity level by the vibration absorbers. 

 

5 Discussion 

The experiments in this study were conducted mainly to validate the prediction model. A low loss factor around 

0.01 was extracted from the fabricated absorbers. With such a damping value, the absorber can only interfere 

rather than largely reduce the floor vibration. This is the reason that the measured velocity level reduction is 

only less than 2dB in 63Hz band in Figure 25. To achieve an effective reduction of the floor vibration and 

impact sound, safeguarding sufficient damping of the absorber remains a key task. 

 

In the current joist floor model, the revised second moment of inertia does help to approximate the tight 

connection between the plate and beams. The value of z'=0.5hb is simply determined as the distance from the 

neutral plane of the beam to the physical interface between the plate and beam. For different floor boundary 

conditions or ways of connection between the plate and beams, this value may vary or is dependent on the 

modes. 

 

The free boundary condition was chosen in the laboratory experiment to verify the applicability of the model 

for predicting the effect of the multiple SDOF vibration absorbers on the vibration of the lightweight joist 

floors. The model has been proven to be useful under the free boundary condition. For the other boundary 

conditions, this model is also expected to be able to achieve the effective predictions when other boundary 

conditions are applied.  

6 Conclusions 

In this paper, the effect of multiple vibration absorbers on the floor vibration has been investigated 

computationally and experimentally.  



 

 

 

 

 

 

 

14 

 

The impact responses of a freely-supported scaled floor structure with and without vibration absorbers were 

measured. A mass-spring type of vibration absorber is designed to target the 70Hz mode of the floor. From the 

measured floor mobility, a significant change was observed near this frequency after the installation of the 

absorbers. Except for the 70Hz mode, the vibration absorber also has a rotation mode and two swing modes at 

14, 34, 115Hz. These modes did not show obvious effects on the floor vibration.  

 

An analytical model of a rectangular ribbed-plate was applied to predict the transfer function of the joist floor 

influenced by the vibration absorbers. The model assumes the floor as a thin structure and all materials as 

homogeneous. It is based on the modal superposition method of bending waves and includes the bending and 

torsional waves in the beams. The vibration absorbers are adapted into the floor mode as multiple SDOF mass-

spring systems. In general, the prediction provides a good agreement with the measured result in the frequency 

range of interest. 
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