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Abstract 

Wave propagation in layered media of fluid, elastic and porous nature is commonly analyzed with the transfer 

matrix method (TMM). Up to now it has been used extensively to analyze airborne sound transmission and 

sound absorption. Its use for impact sound transmission has been investigated to a limited extent, i.e. for infinite 

thick homogeneous elastic plates and for specific receiver locations. This contribution aims to broaden the 

scope such that the impact sound power radiated by finite floors containing elastic, fluid and/or porous layers, 

can be accurately analyzed. A disadvantage of the conventional TMM is that only floors of infinite extent can 

be implemented. In order to approximately model finite floors with simply supported boundary conditions, the 

vibration field of the floor is expressed in terms of sinusoidal lateral basis functions, which relate to the 

traveling waves that are analyzed with the TMM. The resulting approach is termed the modal TMM, or 

mTMM. A standard tapping machine provides the structural excitation and all five hammers are taken into 

account for a more accurate representation of the excitation force, with respect to the common simplification 

where only one hammer is modelled. Predictions of the radiated sound power are validated with measurements 

for a bare floor and a floating floor. 

Keywords: transfer matrix, impact sound, standard tapping machine. 

1 Introduction 

The transfer matrix method (TMM) [1-5] is widely used to predict the airborne sound insulation and sound 

absorption of layered wall and floor systems. An advantage of the method is that different types of layer can 

be incorporated such as fluid, solid and porous layers. Accurate results of the sound insulation are achieved at 

high frequencies. The method has been used only to a limited extent for the prediction of impact sound 

radiation of a homogeneous single layered floor [6]. However, some drawbacks are related to this method. 

First, an empiric expression is proposed in [6] to compute the sound pressure level in the receiver room. 

Second, the floors are of infinite extent. Third, the result is not accurate at low frequencies because the 

boundary conditions and resulting modal behavior of the floor are neglected. A previous extension to the 

methodology has been published, where the radiated sound power level is computed in the spatial domain [7] 

or wavenumber domain [8,9] for infinite multilayered floors. However, this method still neglects the finite 

floor size and its modal behavior. Spatial windowing techniques [10,11] have been developed to account for 

the finite floor size. However, these techniques still omit the modal behavior of the floor. As an improvement 

on the state of the art, the modal TMM (mTMM) [12] is adopted to compute the sound power radiated from 

finite floors, while also accounting for the modal behavior of the floor.  
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A standard tapping machine, for which the properties are prescribed in ISO 10140-5 [13], is used to provide 

an excitation force to the floor. A tapping machine consists of five hammers, impacting consecutively every 

0.1s. In literature, the simplification is often made that only one hammer impacts on the floor every 0.1 s 

[8,14,15]. This assumption causes the spectral shape of the emitted sound to be a 10 Hz line spectrum, whereas 

a narrowband measurement of a timber joist floor excited by a standard tapping machine revealed a 2 Hz line 

spectrum [16]. This contribution takes all five impact hammers into account, including the time delay between 

hammer impacts, as well as the difference in location and driving point admittance due to the hammer spacing 

in order to accurately predict the excitation force of the standard tapping machine. 

 

The remainder of this paper is organized as follows. The prediction method for the radiated sound power of 

finite floors using the mTMM in the wavenumber domain is presented in section 2. Validation examples for 

the radiated sound power from multilayer floors are discussed in section 3. Concluding remarks are given in 

section 4. 

 

2 Prediction method 

In the first step of the prediction method, the mathematical description of the force exerted on the floor by a 

standard tapping machine is introduced. All five hammers are considered to construct a correct force signal. 

In a second step, the velocity field at the lower side of the floor is obtained as a result of wave propagation 

through the floor, which is modelled using the mTMM. In the third step, a relation is obtained between the 

external force and the pressure field at the floor surface. In the fourth and last step, the velocity field at the 

lower side of the floor is used to compute the radiated sound power into the receiver room, assuming a weak 

coupling of the floor and the air volume in the receiver room.  

2.1 Impact force 

All results are based on mechanical excitation of the floor by means of a standard tapping machine, which 

produces a periodic impact force, assumed to be of very short duration at t = 0 for hammer 1. This periodic 

impact force of hammer 1 can be represented by an exponential form of the Fourier series [3,17]. 

 

𝐹(1)(𝑡) = ∑ 𝐹𝑛
(1)

∞

𝑛=−∞

e𝑖
2𝜋𝑛
𝑇
𝑡  = 𝐹0

(1)
+ 2∑𝐹𝑛

(1)

∞

𝑛=1

cos (
2𝜋𝑛

𝑇
𝑡) 

 
(1) 

 

with 𝜔0 =
2𝜋

𝑇
   ,   𝐹𝑛

(1)
=

1

𝑇
∫ 𝐹(1)(𝑡)e−𝑖

2𝜋𝑛

𝑇
𝑡𝑑𝑡

𝑇

0
 

where 𝐹𝑛
(1)

 represents the amplitude of the nth harmonic component of the impact force resulting from hammer 

1. For a standard tapping machine, each hammer has a mass of m = 0.5 kg and has a free-drop height of h = 

0.04 m, as specified by ISO 10140-5:2010 [1].  Since the duration of the force pulse is short with respect to 

the period of interest, the Fourier amplitude of the harmonics can be approximated by  𝑒−𝑖
2𝜋𝑛

𝑇
𝑡 ≈ 1 [4,17]. 

Considering the contribution of each impact hammer separately, the period of the hammers equals T=0.5 s. 

The impulse-momentum theorem [18] is used to express the Fourier coefficients in terms of the known mass 

and drop height of the hammers, assuming ideal elastic impacts to obtain an upper limit for the force amplitude. 

 

𝐹𝑛
(1)
≈
1

𝑇
∫ 𝐹(1)(𝑡)𝑑𝑡
𝑇

0

=
2𝑚𝑣0
𝑇

=
2𝑚

𝑇
√2𝑔ℎ = 1.77 𝑁 

 

 

(2) 

The time-signal of the kth hammer displays a delay 𝑡𝑘 of the impact time with respect to the first hammer at t 

= 0 s. The order of impacts from the hammers is 1-3-5-2-4, with an interval of 0.1 s between each hammer. 
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𝐹(𝑘)(𝑡 − 𝑡𝑘) = ∑ 𝐹𝑛
(𝑘)
e𝑖
2𝜋𝑛
𝑇
(𝑡−𝑡𝑘)   

∞

𝑛=−∞

 

 

 
(3) 

Which constitutes a phase angle −
2𝜋𝑛

𝑇
𝑡𝑘 for the nth harmonic of hammer k. The phase shifts of all hammers 

are visualized in Figure 1, showing that the forces always cancel each other out, except at 10 Hz multiples 

where all hammers act in phase. Of course this conclusion only holds under the assumption that all hammers 

hit the structure at the exact same location. If the distance between the hammers is accounted for, the force 

amplitudes will vary due to the fact that the floor has a location dependent point mobility, such that the phases 

will no longer cancel out the hammer forces entirely and sound radiation at 2 Hz multiples will occur. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Velocity field 

For homogeneous elastic solid layers in the TMM, as illustrated in Figure 2, the acoustic state is represented 

by four variables in the frequency-wavenumber domain: the velocity in x-direction 𝑣𝑥
𝑠 and z-direction 𝑣𝑧

𝑠, the 

normal stress in the vertical direction 𝜎𝑧𝑧 and the shear stress 𝜎𝑥𝑧. This acoustic state is represented by the 

vector 𝑉𝑠(𝑀), where the superscript s denotes a solid layer. Note that these four variables are sufficient to 

completely describe the deformation and stress state of the layer as the TMM considers two-dimensional wave 

propagation in the xz-plane. The states on the top side (𝑧 = zA) and bottom side (𝑧 = zB) of a homogeneous 

elastic layer are related through a transfer matrix 𝑇𝑠 [6,10,19]. 𝑧𝐴 denotes the side where the impact force is 

applied, while 𝑧𝐵 denotes the floor-receiver room interface. The elements of the transfer matrix as well as the 

acoustic state variables depend on the trace wavenumber 𝑘𝑟 = √𝑘𝑥
2 + 𝑘𝑦

2 

 

𝑽𝑠(𝑘𝑟, 𝜔, zA) = [𝑣𝑥
𝑠(𝑘𝑟, 𝜔, zA)  𝑣𝑧

𝑠(𝑘𝑟, 𝜔, zA)  𝜎𝑥
𝑠(𝑘𝑟, 𝜔, zA)  𝜎𝑥

𝑠(𝑘𝑟, 𝜔, zA)]
𝑇 

 

(4) 

 

𝑽𝑠(𝑘𝑟, 𝜔, zA) = 𝑻
𝑠(𝑘𝑟, 𝜔)𝑽

𝑠(𝑘𝑟, 𝜔, zB) 
 

(5) 

 

Figure 2: Convention used in the mTMM model, with the receiver room at positive z-coordinates. 
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2 
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Figure 1: Phase shift for each of the five hammers a) 1st harmonic (2 Hz) b) 2nd harmonic (4 Hz) c) 3rd 

harmonic (6 Hz) d) 4th harmonic (8 Hz) e) 5th harmonic (10 Hz). 
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In case of a bare floor, only a single elastic layer is present. When considering a vertical impact force on the 

floor, 4 boundary conditions are needed to solve the wave field. The vertical stress at the impact side equals 

𝜎𝑧𝑧(𝑘𝑟, 𝜔, zA) and will further on be related to the external force. There is no shear stress at either side of the 

floor, i.e. 𝜎𝑥𝑧(𝑘𝑟, 𝜔, zA) = 𝜎𝑥𝑧(𝑘𝑟, 𝜔, zB) = 0 . The vertical stress at the receiver room interface is 

approximately zero when weak coupling is assumed between the floor and the air volume, so 𝜎𝑧𝑧(𝑘𝑟, 𝜔, zB) ≈
0. These boundary conditions lead to four known stresses, so only the velocities of the acoustic states at both 

floor edges are unknown. They are described by following vectors: 

 

𝑽𝑠(𝑘𝑟, 𝜔, zA) = [𝑣𝑥
𝑠(𝑘𝑟, 𝜔, zA)  𝑣𝑧

𝑠(𝑘𝑟, 𝜔, zA)  𝜎𝑧𝑧(𝑘𝑟, 𝜔, zA) 0]
𝑇 (6) 

 

𝑽𝑠(𝑘𝑟, 𝜔, zB) = [𝑣𝑥
𝑠(𝑘𝑟, 𝜔, zB)  𝑣𝑧

𝑠(𝑘𝑟, 𝜔, zB)  0 0]
𝑇 (7) 

 

For thick, finite floors, the velocity field can be approximated using a Ritz approach, i.e. by means of a 

generalized velocity 𝑣𝑗(𝑧, 𝜔) and a finite set of shape functions 𝜙(𝑥, 𝑦) that satisfy the simply supported 

boundary conditions at any coordinate z. 

𝑣(𝑥, 𝑦, 𝑧, 𝜔) =  ∑𝑣𝑗(𝑧, 𝜔)𝜙𝑗(𝑥, 𝑦)

𝑁𝑚

𝑗=1

 

 

 

(8) 

For finite floors the origin of the coordinate system is located at a corner of the floor for computational 

purposes, so coordinates range from [0 ; 0] to [𝐿𝑥 ; 𝐿𝑦]. The floor is assumed to have a rectangular shape, 

composed of homogeneous layers with simply supported boundary conditions and hysteretic damping. The 

chosen shape functions are mass normalized sine functions [2].   

 

𝜙𝑗(𝑥, 𝑦) =
2

√𝜌𝑡𝐿𝑥𝐿𝑦
sin (

𝑚𝑗𝜋

𝐿𝑥
𝑥) sin(

𝑚𝑗𝜋

𝐿𝑦
𝑦) 

 

(9) 

where 
𝑚𝑗𝜋

𝐿𝑥
= 𝑘𝑗𝑥 and 

𝑛𝑗𝜋

𝐿𝑦
= 𝑘𝑗𝑦 are the x and y components of the modal wavenumber, 𝜌 is the mass density, 

t is the floor thickness and 𝑚𝑗 and 𝑛𝑗 are the number of half wavelengths  of mode j in the x and y directions, 

respectively.  

  

The transfer matrix relates the acoustic states of the top and bottom sides of the floor. Equation 5 can be 

reformulated [13] such that a mechanical impedance matrix relates the velocities at both sides of the floor to 

the stresses at both sides of the floor. This mechanical impedance formulation is repeated for the Cartesian 

wavenumber domain, where the decomposition of the velocity field (cfr. Equation 8) is performed and where 

the trace wavenumber, imposed on the TMM, is the modal wavenumber 𝑘𝑗 = √𝑘𝑗𝑥
2 + 𝑘𝑗𝑦

2 . 

∑(𝑍𝐴𝐴(𝑘𝑗, 𝜔)𝑣𝑗(zA, 𝜔) + 𝑍𝐴𝐵(𝑘𝑗, 𝜔)𝑣𝑗(zB, 𝜔))𝜙𝑗(𝑥, 𝑦) = 𝑝(𝑥, 𝑦, zA, 𝜔)

𝑁𝑚

𝑗=1

   

 

(10) 

∑(𝑍𝐵𝐴(𝑘𝑗, 𝜔)𝑣𝑗(zA, 𝜔) + 𝑍𝐵𝐵(𝑘𝑗, 𝜔)𝑣𝑗(zB, 𝜔))𝜙𝑗(𝑥, 𝑦) = 𝑝(𝑥, 𝑦, zB, 𝜔)

𝑁𝑚

𝑗=1

 

 

 

(11) 

A weighted residual formulation is then constructed with weight function 𝜙𝑙(𝑥, 𝑦). 
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{
 
 
 
 
 

 
 
 
 
 
∫ ∫ [∑(𝑍𝐴𝐴(𝑘𝑗, 𝜔)𝑣𝑗(zA, 𝜔) + 𝑍𝐴𝐵(𝑘𝑗, 𝜔)𝑣𝑗(zB, 𝜔))𝜙𝑗(𝑥, 𝑦)

𝑁𝑚

𝑗=1

] 𝜙𝑙(𝑥, 𝑦)d𝑥d𝑦
𝐿𝑦

0

𝐿𝑥

0

= ∫ ∫ 𝑝(𝑥, 𝑦, zA, 𝜔) 𝜙𝑙(𝑥, 𝑦)d𝑥d𝑦
𝐿𝑦

0

𝐿𝑥

0

∫ ∫ [∑(𝑍𝐵𝐴(𝑘𝑗, 𝜔)𝑣𝑗(zA, 𝜔) + 𝑍𝐵𝐵(𝑘𝑗, 𝜔)𝑣𝑗(zB, 𝜔))𝜙𝑗(𝑥, 𝑦)

𝑁𝑚

𝑗=1

] 𝜙𝑙(𝑥, 𝑦)d𝑥d𝑦
𝐿𝑦

0

𝐿𝑥

0

= ∫ ∫ 𝑝(𝑥, 𝑦, zB, 𝜔) 𝜙𝑙(𝑥, 𝑦)d𝑥d𝑦
𝐿𝑦

0

𝐿𝑥

0

 

 

 

 

 

 

 

 

(12) 

The shape functions 𝜙𝑗(𝑥, 𝑦) are orthogonal to each other, so the following equation is valid: 

 

∫ ∫ 𝜙𝑙(𝑥, 𝑦)
𝐿𝑦

0

𝐿𝑥

0

𝜙𝑗(𝑥, 𝑦)d𝑥d𝑦 =
1

𝜌𝑡
𝛿𝑗𝑙  

 

 

(13) 

Substituting the decomposition from Equation 8 into the mechanical impedance expression of Equations 10 

and 11, leads to following relation between the generalized velocities and pressures for a single mode 𝑗. 
 

[
𝑍𝐴𝐴
𝑠 (𝑘𝑗 , 𝜔) 𝑍𝐴𝐵

𝑠 (𝑘𝑗, 𝜔)

𝑍𝐵𝐴
𝑠 (𝑘𝑗 , 𝜔) 𝑍𝐵𝐵

𝑠 (𝑘𝑗, 𝜔)
] [
𝑣𝑗(zA, 𝜔)

𝑣𝑗(zB, 𝜔)
] = [

𝑝𝑗(zA, 𝜔)

𝑝𝑗(zB, 𝜔)
] 

 

 

(14) 

The resulting velocity field is finally transformed to the wavenumber domain, where the integration 

bounds are limited since the shape functions are equal to zero beyond the edges of the floor surface and 

this integral can be solved analytically.  Incorporation of the approximate modal behavior of finite floors 

requires computation of the resulting velocity field in the (𝑘𝑥, 𝑘𝑦) wavenumber domain, in contrast to 

infinite floors where the cylindrical wavenumber domain is preferred due to the axisymmetric nature of 

the wave propagation. 

𝑣(𝑘𝑥, 𝑘𝑦, 𝑧, 𝜔) =  ∫ ∫ 𝑣(𝑥, 𝑦, 𝑧, 𝜔)𝑒i𝑘𝑥𝑥𝑒i𝑘𝑦𝑦d𝑥d𝑦
𝐿𝑦

0

𝐿𝑥

0

 

                            =   ∑𝑣𝑗(𝑧, 𝜔)∫ ∫ 𝜙𝑗(𝑥, 𝑦)𝑒
i𝑘𝑥𝑥𝑒i𝑘𝑦𝑦d𝑥d𝑦

𝐿𝑦

0

𝐿𝑥

0

𝑁𝑚

𝑗=1

 

                            

=   
2

√𝜌𝑡𝐿𝑥𝐿𝑦
∑𝑣𝑗(𝑧, 𝜔) (

𝑘𝑗𝑥(1 − (−1)
𝑚𝑗𝑒𝑖𝑘𝑥𝐿𝑥)

(𝑘𝑗𝑥
2 − 𝑘𝑥

2)
)(
𝑘𝑗𝑦(1 − (−1)

𝑛𝑗𝑒𝑖𝑘𝑦𝐿𝑦)

(𝑘𝑗𝑦
2 − 𝑘𝑦

2)
)

𝑁𝑚

𝑗=1

 

 

 

 

 

 

 

 

 

(15) 
 

 

2.3 Relation between external force and floor surface pressure 

The external point force can be expressed as an integration of the pressure field over the floor surface. 

 

𝐹(𝜔) =  ∫ ∫ 𝑝(𝑥, 𝑦, zA, 𝜔)𝑑𝑥𝑑𝑦
𝐿𝑦

0

𝐿𝑥

0

 
 

(16) 

 

Where 

𝑝(𝑥, 𝑦, zA, 𝜔) =  𝐹(𝜔)𝛿(𝑥)𝛿(𝑦) (17) 
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To determine the generalized pressure at the impact side (𝑧 = 𝑧𝐴), an expression is required to relate the 

generalized pressure to the impact force 𝐹(𝜔).  

∫ ∫ 𝜙𝑙(𝑥, 𝑦)
𝐿𝑦

0

𝐿𝑥

0

𝑝(𝑥, 𝑦, zA, 𝜔)d𝑥d𝑦 =  ∑∫ ∫ 𝜙𝑙(𝑥, 𝑦)
𝐿𝑦

0

𝐿𝑥

0

𝜙𝑗(𝑥, 𝑦)𝑝𝑗(zA, 𝜔)d𝑥d𝑦

𝑁𝑚

𝑗=1

 

 

 

(18) 

Using the orthogonality from Equation 13 in Equation 18 results in 

∫ ∫ 𝜙𝑙(𝑥, 𝑦)
𝐿𝑦

0

𝐿𝑥

0

𝑝(𝑥, 𝑦, zA, 𝜔)d𝑥d𝑦 =∑
1

𝜌𝑡
𝛿𝑗𝑙𝑝𝑗(zA, 𝜔)

𝑁𝑚

𝐽=1

 

 

 

(19) 

and subsequent substitution of Equation 17 into above expression yields a relation between the generalized 

pressure and the impact force. 

𝑝𝑗(zA, 𝜔) = 𝜌𝑡𝜙𝑗(𝑥𝑓 , 𝑦𝑓)𝐹(𝜔) (20) 

2.4 Radiated sound power 

The room is modelled as an acoustic halfspace, so the sound is radiated by the floor into the direct field of the 

room. The relation between pressure and velocity at the floor-room interface depends on the ratio of the trace 

wavenumber √𝑘𝑥
2 + 𝑘𝑦

2 and the wavenumber in air 𝑘𝑎 [2]. 

{
  
 

  
 𝑝(𝑘𝑥 , 𝑘𝑦, 𝑧, 𝜔) =  𝜌𝑎𝑐

𝑘𝑎(𝜔)

√𝑘𝑎
2(𝜔) − (𝑘𝑥

2 + 𝑘𝑦
2)

𝑣(𝑘𝑥, 𝑘𝑦, 𝑧, 𝜔)     𝑘𝑥
2 + 𝑘𝑦

2 ≤ 𝑘𝑎
2(𝜔)

𝑝(𝑘𝑥 , 𝑘𝑦, 𝑧, 𝜔) =  𝜌𝑎𝑐
𝑘𝑎(𝜔)

−i√(𝑘𝑥
2 + 𝑘𝑦

2) − 𝑘𝑎
2(𝜔)

𝑣(𝑘𝑥, 𝑘𝑦, 𝑧, 𝜔)     𝑘𝑥
2 + 𝑘𝑦

2 ≥ 𝑘𝑎
2(𝜔)

 

 

 

 

(21) 

The radiated sound power W is obtained in the spatial domain by integration of the sound intensity over the 

entire floor surface. To this end, a double inverse wavenumber transform is applied to the velocity and pressure 

at the floor-room interface. 

𝑝(𝑥, 𝑦, 𝑧, 𝜔) =
1

4𝜋2
∫ ∫ 𝑝(𝑘𝑥 , 𝑘𝑦, 𝑧, 𝜔)𝑒

−i𝑘𝑥𝑥𝑒−i𝑘𝑦𝑦d𝑘𝑥d𝑘𝑦

∞

−∞

∞

−∞

  

 

 

(22) 

𝑣(𝑥, 𝑦, 𝑧, 𝜔) =
1

4𝜋2
∫ ∫ 𝑣(𝑘𝑥

′ , 𝑘𝑦
′ , 𝑧, 𝜔)𝑒−i𝑘𝑥

′𝑥𝑒−i𝑘𝑦
′ 𝑦d𝑘𝑥

′ d𝑘𝑦
′

∞

−∞

∞

−∞

  

 

 

(23) 

The use of 𝑘 and 𝑘′ is introduced to make a clear distinction between both integral variables. The sound power 

is expressed as 

𝑊(𝜔) =
1

2
Re(∫ ∫ 𝑝(𝑥, 𝑦, zB, 𝜔)𝑣

∗(𝑥, 𝑦, zB, 𝜔)dxdy
𝐿𝑦

0

𝐿𝑥

0

) 

 

 

(24) 

The integration boundaries can be extended from [0 ; 𝐿𝑥] and [0 ; 𝐿𝑦] to ] − ∞ ;∞[ as the shape functions are 

equal to zero outside of the floor surface area and consequently there is no sound power radiation beyond the 

floor boundaries. Substitution of Equations 22 and 23 into Equation 24 and subsequent integrations over (𝑥, 𝑦) 
and (𝑘𝑥

′  , 𝑘𝑦
′ ) [20] lead to following expression for the sound power radiation in the wavenumber domain: 
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𝑊(𝜔) =
1

8𝜋2
Re(∫ ∫ 𝑝(𝑘𝑥 , 𝑘𝑦, zB, 𝜔)𝑣

∗(𝑘𝑥, 𝑘𝑦, zB, 𝜔)d𝑘𝑥d𝑘𝑦

∞

−∞

∞

−∞

) 
 

(25) 

This is a double infinite integral. However, only wavenumber components satisfying the condition  𝑘𝑥
2 + 𝑘𝑦

2 ≤

𝑘𝑎
2(𝜔) contribute to the real part of the integral and thus to net sound power radiation, such that the range of 

integration can be reduced. Substituting the first expression of Equation 21 into the reduced integral leads to a 

compact formulation for the radiated sound power. This expression can be simplified due to the quadratic 

nature of the integrand, leading to a significant increase in computational efficiency. 

 

𝑊(𝜔) =
𝜌𝑎𝑐𝑘𝑎(𝜔)

2𝜋2
Re

(

 ∫ ∫
|v(𝑘𝑥, 𝑘𝑦, zB, 𝜔)|

2

√𝑘𝑎(𝜔)
2 − (𝑘𝑥

2 + 𝑘𝑦
2)

d𝑘𝑥d𝑘𝑦

√𝑘𝑎(𝜔)
2−𝑘𝑦

2

0

𝑘𝑎(𝜔)

0

)

  

 

(26) 

3 Validation 

A validation case is included for the analysis of a multilayered structure. Measurements were performed by 

the BBRI [21] on a floating floor with horizontal dimensions 𝐿𝑥 =  2.60 m and 𝐿𝑦 = 4.42 m. The floor was 

impacted with a standardized tapping machine. Measurements were performed for at least four unknown 

impact locations. The results for the prediction models in Figure 3 are an average of the results from four 

randomly distributed impact locations at (0.75 m, 1.02 m); (2.06 m, 2.03 m); (1.32 m, 3.78 m) and at (1.72 m, 

2.94 m) for the middle hammer, where it is assumed that the tapping machine was placed along the y-axis. All 

relevant layer properties are provided in Table 1. Measurement results for the bare concrete floor and the 

floating floor system are illustrated in Figure 3: as well as predictions for the radiated sound power using two 

models for the impact force: a model where one force impacts at 10 Hz and a model where all five hammers 

at 2 Hz are included and the distance between hammers is accounted for.  Measurement results were obtained 

down to the 50 Hz one-third octave band. It is clear from the figure that the one hammer model and the five 

hammer model yield nearly identical results at 50 Hz and above. The single number ratings 𝐿𝑛,𝑊(𝐶𝐼) for the 

measurements are 68 dB (+0 dB) for the bare floor and 36 dB (+13 dB) for the floating floor, while both 

prediction methods have an identical SNR, which is 70 dB (-4 dB) for the bare floor and 36 dB (+11 dB) for 

the floating floor. 

Table 1: Layering and material properties of the floating floor.  * Assumed values which are widely used in 

literature. ** Estimated properties. 

Layer 𝜌 [𝑘𝑔/𝑚3] 𝑡 [𝑚] 𝜂 [−] 𝜈 [−] 𝐸 [𝑁/𝑚2] 
Floating screed 1800 0.06 0.015 * 0.2 * 31.5e9(1+𝜂i) * 

INSULIT BI+8 40 0.008 0.8 ** 0.3 ** 1.6e5(1+𝜂i) * 

Base concrete floor 2400 0.14 0.015 * 0.2 * 31.5e9(1+𝜂i) * 
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In Figure 4, the prediction method is extended down to the 6.3 Hz one-third octave band. As a reference 

solution, a prediction of the radiated sound pressure level using an averaged force spectrum [13] is shown. It 

is clear that the assumption of 1 hammer acting at 10 Hz is valid from 40 Hz onward, but for lower bands, 

there would be no or only one line present in the force spectrum, leading to a high uncertainty or even no 

radiated power at all. The results for the prediction model using five hammers still displays distinct peaks at 

10 Hz multiples since all hammers act in phase, but the harmonic results clearly show that the sound pressure 

level is nonzero at 2 Hz multiples, because the difference in location of the hammers yields different amplitudes 

for the hammer forces an consequently they don’t cancel out anymore due to their phase differences. The 10 

Hz multiples still dominate the resulting spectrum, as the difference between the 10 Hz multiples and the 2 Hz 

multiples is around 25 dB. 

 

 
 

(a) (b) 

Figure 3: Radiated sound pressure level: measurement (black), 5 hammer prediction (red dashed line) 1 

hammer prediction (green dotted line) for (a) bare concrete floor (b) floating floor 

(a) (b) 

Figure 4: Radiated sound power level, computed with an averaged force spectrum [13] (blue solid line), 1 

hammer acting at 10 Hz (green) and the 5 hammers acting at 2 Hz (red) (a) harmonic sound power level (b) 

sound power level in one-third octave bands. 
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4 Conclusions 

The mTMM framework is presented for finite floors. Validation examples have shown that the mTMM has an  

accuracy of a few dB for the entire 50-5000 Hz frequency range, since the boundary conditions and resulting 

modal behavior are accounted for. It has been shown that when analyzing a structure below 50 Hz, it is 

important to use a more detailed mathematical formulation for the impact force, taking into account all five 

hammers acting at 2 Hz and the distance between those hammers. 
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