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Abstract 

Construction work or traffic excite nearby buildings, and the perceptible or audible vibration can be a nuisance 

for the inhabitants. The transfer of the vibration from the free field to the building has been calculated by the 

finite element method for many models in consultancy and research work. The analysis for all storeys of certain 

building points such as walls, columns and floors unveiled some rules, some typical modes, and some wave-

type responses. A simplified building-soil model has been created, which includes well these effects of 

building-soil resonance, wall/column resonance, floor resonances, and the high-frequency reduction. The 

model consists of one wall for a wall-type apartment building or a column for each specific part (mid, side or 

corner) of a column-type office building. The building response in the high-frequency (acoustic) region is 

calculated as mean values over all storeys and over wider frequency bands, by wave-type asymptotes of an 

infinitely tall building, and by the soil to wall ratio of impedances. The secondary noise is predicted by transfer 

values between the building vibration (center of floors, walls at a room corner) and the sound pressure. 
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1 Introduction 

The literature about building vibrations is quite limited, for example [1-3]. It is often related to railway-induced 

vibration. Railway excitation, namely from tunnels have typically high-frequency components. Therefore in 

practice, the prediction of vibration and noise is of importance. The prediction can be done with detailed finite-

element models or by simplified models. Both possibilities will be demonstrated in this contribution. 

 

Buildings have been often calculated without the underlying soil or with a very stiff soil. The soft soil, however, 

yields an amplitude reduction with increasing frequency, modifies the resonance frequencies and mode shapes, 

and provides a strong radiation damping. Without the soil, many resonance peaks appear in the solution which 

are not present for the building model with the soil. The building-soil interaction should be included in the 

building analysis even if the propagation through the soil and the response of the building is calculated 

separately. 

 

Vibration results are often presented for a single building point (or a few singular points), and a good 

interpretation is rarely found. The vibration of a building is a complex behaviour which must be studied by 

many points or the average of many points. This contribution aims at giving an interpretation by looking at 

many building points or averages of many points. 

2 The vibration response for different types of buildings 

Some building examples have been analysed by the 3D finite-element method [4], here a wall-type apartment 

building and a column-type office tower are shown [5]. Results of a simplified 1D model are evaluated for 

comparison [6]. 



 

2.1 A four-storey apartment building 

A four-storey apartment building with masonry walls and concrete floors has been analysed on a medium stiff 

soil. The transfer functions V(f) = vB/v0(f)  between the free field v0 and the building components vB are shown 

in Fig. 1. These transfer functions show some general characteristics. All freefield-building transfer functions 

start with V = 1 at zero frequency and usually end below V < 1 at 50 Hz. That means that the free field is not 

modified by the building at low frequencies whereas the free field is reduced by the building at high 

frequencies. In between, amplifications of the free field can occur due to several reasons. At 10 Hz, the 

resonance of the building on the compliant soil can be found with amplitudes of V = 5 to 6. This building-soil 

resonance frequency is determined by the stiffness k of the soil and the mass m of the building as fS = k/m. 

As a consequence, the building-soil resonance frequency should be proportional to the shear wave velocity of 

the soil fS ~ vS = G/ and indirectly proportional to the square root of the number of storeys fS = 1/n. 

  

  

Figure 1 – Soil-building transfer functions of a four-storey apartment building, a,b) walls, c,d) floors,        

a,c) 3D finite-element model, b,d) 1D prediction model;  ground floor,  1st,  2nd,  3rd floor, roof. 

  

Figure 2 – Vibration modes of the apartment building at a) 24 Hz and b) 37 Hz. 

Next at 25 Hz, some smaller amplifications can be found which are due to the floor resonances. The floor 

resonance frequencies are ruled by the width (5 m x 5 m), the thickness (0.2 m) and the support conditions 

(clamped-clamped) of the floor (Fig. 2a). Finally, another characteristic behaviour can be observed at 37 Hz 

where the floors and the walls are vibrating in anti-phase (Fig. 2b). The results for the 1D prediction model are 
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also given in Figures 1c,d. The agreement of the one-dimensional prediction model with the three-dimensional 

finite-element model is very good. 

2.2 A twenty-storey office tower 

The twenty-storey office tower presents another characteristic of building vibration. Fig. 4a shows a vibration 

mode where the amplitudes increase with increasing storey number. This vibration mode is called the column 

mode because the deformation of the columns is the main reason of this vibration. The column frequency is 

determined by the wave velocity vL of the columns (and floors) and the height H of the building fC = vL/4H.  

 

  

Figure 3 – Soil-building transfer functions of the office tower, a) finite element model, b) prediction model; 

 ground,  3rd,  6th,  9th,  12th ,  15th,  18th floor. 

  

 

Figure 4 – a) 3D finite-element model of an office tower, vibration mode at 4 Hz; b) 1D soil-wall-floor 

model of the standard 6-storey apartment building c) soil-building transfer functions of the 1D model (thirds 

of octaves up to 256 Hz),  ground floor,  1st,  2nd,  3rd,  4th,  5th floor,  roof. 
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The column frequency indicates an amplification of the amplitudes with height and a resonance in case of a 

stiff soil. The column frequency of the office tower is fC = 6 Hz and the soil-building resonance is also at 6 Hz. 

So, both modes (the soil and the column mode) work together, amplifying each other and resulting in a basic 

building resonance at 4 Hz which can be found for the finite element as well as for the prediction model (Fig. 

3a,b). The office tower has the lowest resonance frequency and the highest resonance amplitudes of all building 

examples, but at the same time all amplitudes above 10 Hz are quite small, below V = 1. 

 

It should be noted that the apartment building of the preceding section has also a relevant column (wall) 

frequency at fC = 19 Hz because of the softer masonry material. Due to the soft material, the low-rise apartment 

building has a low wall frequency and the deformations of the wall have an influence on the basic building 

resonance shifting it from 12 Hz to 10 Hz (Fig. 1a). 

 

Because of the good agreement between 3D finite-element results and the 1D results, the 1D model seems 

suited for a simple and fast prediction. This model is described in the next section, and corresponding results 

for more building examples and higher (acoustic) frequencies are presented in the following section 4. As the 

results for different storeys vary considerably at higher frequencies (Fig. 4c), mean values for all storeys are 

calculated and presented. 

3 The 1D soil-wall-floor model 

A wall resting on a foundation and excited by the free-field vibration u0 (Fig. 4b) is described by the differential 

equation for the vertical displacements u 

 𝐸𝑊𝐴𝑊
𝜕2𝑢

𝜕𝑥2 − 
𝑊

𝐴𝑊
𝜕2𝑢

𝜕𝑡2 = 0         (1) 

and two boundary conditions, one for the force-free roof 

 𝐹𝑅 = −𝐸𝑊𝐴𝑊
𝜕𝑢

𝜕𝑥
(𝑥𝑅) = 0         (2) 

and the other for the coupling of the foundation to the soil 

 𝐹𝑆 = −𝐸𝑊𝐴𝑊
𝜕𝑢

𝜕𝑥
(𝑥𝑆) = 𝑘(𝑢(𝑥𝑆) − 𝑢0) + 𝑐

𝜕𝑢

𝜕𝑡
(𝑢(𝑥𝑆) − 𝑢0)     (3) 

EW is the elasticity modulus, W the mass density, and AW the cross section of the wall, k is the stiffness and c 

the damping of the foundation, see [7]. 

 

The solution is found in frequency domain by fitting upward and downward longitudinal waves of the wall to 

the boundary conditions. The solution can be expressed in the following explicit form 
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1

1 + 𝑞 
    for an infinitely high wall   (4) 

where  

 = x/H   is the position relative to the height H of the building ( = 0 is the roof),  

a = H/vL   is a normalized frequency parameter with vL the wave speed of the wall.  

The parameter 

 𝑞 =
𝑖𝜔 √𝐸𝑊𝜌𝑊 𝐴𝑊

𝑖𝜔𝑐+𝑘
=

𝐾𝑊

𝐾𝑆
≈

𝑍𝑊

𝑍𝑆
=

√𝐸𝑊𝜌𝑊 𝐴𝑊

1.6√𝐺𝑆𝜌𝑆 𝐴𝑆
       (5) 

describes the support by the foundation stiffness k and damping c. It is the ratio of the dynamic stiffnesses of 

the wall and the soil (foundation) KW, KS. At higher frequencies, it is the ratio of the wall impedance ZW to the 

foundation impedance ZS with the corresponding wall and soil area AW, AS. The transfer function (4) consists 

of 1) a factor for the distribution along the height of the wall and 2) the transfer function of the foundation. 

 



 

The maximum transfer function of the building is the transfer function of the roof 
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The mean value of this transfer function is 

 𝑀2(
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1
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and the mean value of all storeys compared to the roof can be described as 

 𝑀2(
𝑢

𝑢𝑅
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1

0
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The continuum wall model can be extended to a wall-floor model by including the floor transfer function (force 

of the floor to the wall due to the displacement of the wall, floor mass mF, eigenfrequency fF, and damping DF) 

 
𝐹𝐹

𝑢𝑊
= (2𝜋𝑓)2 (𝑚𝐹 + 𝑚′

𝑓2

(1+2𝐷𝐹𝑖)𝑓𝐹
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in the mass density of the wall as 

𝑚∗ =
𝐹𝐹

𝑢𝑊2            and            ∗ = 
𝑊

+  
𝑚∗

𝐴𝑊𝐻
       (10) 

The explicit formula (4) of the continuum wall model still holds, but the parameters *, vL*, a* are now 

frequency dependent and complex. More details can be found in [7]. 

 

The original parameter q (5) for a wall on the soil is complex but turns to be real and constant for higher 

frequencies. For a building supported by elastic elements (springs, elastic layers of real stiffness kI), the 

parameter 

 𝑞 =
𝑖𝜔 √𝐸𝑊𝜌𝑊 𝐴𝑊

𝑘𝐼
           (11) 

is imaginary and linearly increasing with frequency. The inclusion of the floor behaviour makes the parameter 

complex and strongly frequency dependent around the resonance frequency of the floors. It also leads to a 

reduced effective building mass at high frequencies. 

4 Behaviour of buildings on the soil or on elastic elements (parameter study with 

the 1D prediction model) 

The starting point is a 6-storey wall-type building on a medium stiff soil (vS = 200 m/s), see also Table 1. At 

first, the shear wave velocity of the soil is varied between vS = 100 and 300 m/s in Figure 5a-c. The softer the 

soil is, the lower is the building-soil resonance frequency. It is below 4 Hz for the softest soil of vS = 100 m/s. 

In the mid-frequency range, there is a strong decrease of amplitudes and at high frequency the reduced levels 

stay constant. The strongest reduction V  0.1 is for the softest soil whereas the stiffest soil yields high-

frequency amplitudes close to V = 1. The resonance amplitudes of the floors increase strongly with the wave 

velocity (or stiffness) of the soil. 

 

Buildings with a different number n of storeys show mainly differences at low frequencies (Fig. 5d). High 

buildings have a lower building-soil eigenfrequency and a stronger reduction in the mid-frequency range. 

Above the floor resonance frequency, the differences of the buildings are rather small. All buildings behave 

approximately like an infinitely high building in the high-frequency region. 
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Figure 5 – Average transfer functions of a-c) buildings on different soils, vS =  100,  150,  200, 

 300 m/s, a) wall-model, b) walls and c) floors of a wall-floor model; d) walls for different numbers of 

storeys n =  6,  10,  15,  20; e) walls and f) floors for different massive buildings B =  200, 

 300,  500,  800 kg/m3. 



 

If more massive buildings are considered in Figure 5e,f, the same effects as for high buildings are observed at 

low frequencies, a lower building-soil eigenfrequency and a stronger reduction in the mid-frequency range. At 

high frequencies, there are clear differences and a shift of characteristic frequencies. The free-free building 

resonance shifts from 100 to 50 Hz where lower frequencies as well as lower amplitudes are typical for the 

more massive buildings. 

 

Next, results for a building on elastic support are presented. The stiffness of the support is varied so that 

resonance frequencies of 8, 10 ,12.5 and 16 Hz are achieved. These resonance frequencies can be clearly seen 

for the rigid building (Fig. 6a). In Figure 6b,c, a building with rigid walls and elastic floors is considered. The 

floor masses vibrate with the whole building at low frequencies. Then the floor resonance frequency at 20 Hz 

is observed as a maximum of the floor response (Fig. 6c) and a minimum of the wall response (Fig. 6b). Above 

the resonance frequency, the floor masses are decoupled from the building. Therefore, the reduction effect of 

the elastic support is weaker for the wall (stronger for the floors). Finally, the building with elastic walls and 

floors is shown in Figure 6e,f. Instead of the strong reduction of the rigid building, the reduction of the elastic 

building is considerable weaker. This weaker reduction can also be predicted for an infinitely high building 

(Fig. 7a). This high-building-model does not show the frequency-dependent variations due to the wave 

reflections at the roof so that the smooth response curves are well suited for a prediction. The infinitely high 

building model for high frequencies, which is also discussed in [8], is combined with the rigid building model 

for the low frequencies (Fig. 6a) giving a consistent prediction model (Fig. 7b). 

 

Table 1. The soil and building parameters (the standard parameters are underlined) 

Name Symbol Value Remarks 

Shear wave velocity vS 200 m/s  

Mass density of the soil S 2000 kg/m3  

Area of the foundation AS 4 m2 per column 

Area of the foundation AS 12 m2 per wall 

Area of the foundation AS 60 m2 per building 

Stiffness of the foundation k 3.4 S vS
2 AS

0.5  

Damping of the foundation c 1.6 S vS AS  

Number of storeys n 6 / 4 / 20  Fig. 1 / 3 

Height of a storey  3 m  

Area of the building AB 250 m2 Fig. 5ff 

Mass density of the building B 300 kg/m3 Fig. 5ff 

Height of the building H 18 / 12 / 60 m Fig. 1 / 3 

Mass of the building m H AB B  

Thickness of the wall  0.25 m  

Area of the wall AW 2.5 / 3 m2 Fig. 1 

Thickness of the column  0.6 m  

Area of the column  0.36 m2  

Thickness of the floor  0.2 m  

Length of the floor  6 / 5 m Fig. 1 

Young’s modulus of the concrete wall EW 3 1010 N/m2  

Young’s modulus of the masonry wall EM 5 109 N/m2 Fig. 1 

Mass density of the wall W 2500 kg/m3  

Wave velocity of concrete wall vL (EW/W)0.5  

Column/wall frequency fC vL/4H  

Eigenfrequency of the floor fF 20 / 25 / 13 Hz Fig. 1 / 3 

Damping of the floor DF 5 %  

Frequency of the elastic support fI 8 / 10 /12.5 / 16 Hz Fig. 6-7 

Damping of the elastic support DI 10 % Fig. 6-7 



 

 

a) d) 
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c) f) 

  

Figure 6 – Average transfer functions of buildings on different elastic supports, fI =  16,  12.5,  10, 

 8 Hz, a) rigid wall model, b) walls and c) floors of a rigid wall-floor model; d) flexible wall model, e) 

walls and f) floors of a flexible wall-floor model. 

  



 

5 Example prediction of vibration and noise 

For a prediction, the excitation must be included. Here it is a high-frequency urban train excitation from a 

tunnel line. The predicted response of the building to this excitation is shown in Figure 7c. The energy of these 

spectra can be used to evaluate the vibrations according to the standards, for example DIN 4150-2 [9]. The A-

weighted response (Fig. 7d) can be used to predict the noise. A simple transfer law  

Lp = Lv + 6 dB.           (12) 

from velocity to pressure can be used to get the spectra of the noise [10]. Once again, the energy of these noise 

spectra can be used to evaluate the noise level which is compared with the limit values, for example 30 dB at 

night and 40 dB at day [11]. As in many cases, the elastic support is more effective to reduce the noise than to 

reduce the vibration. 

 

a) c) 

  
b) d) 

  

Figure 7 – Average transfer functions of buildings on different elastic supports, fI =  16,  12.5,  10, 

 8 Hz, a) building of infinite height, b) prediction model (rigid and infinite height); c) building response to 

a train excitation , d) A-weighted vibrations (from c). 

 



 

6 Conclusion 

The vibration of buildings has been analysed by 3D finite-element models and by 1D prediction models. The 

agreement between the 1D and 3D models is very good what has been demonstrated for an apartment building 

and an office tower. Soil, wall and floor resonances have been identified at low frequencies. These modes can 

interact if the corresponding frequencies are close together and can result in lower resonance frequencies 

especially for column-type office buildings. At higher frequencies, the amplitudes of different storeys vary 

considerably, so that the high frequencies have been analysed by mean values of all storeys. The high-

frequency reduction from the free field to the building has been quantified with different models, rigid or 

elastic walls, with or without floors, and finally with an infinitely high wall model. The reduction is constant 

for the buildings on the soil whereas a building on an elastic support has linearly decreasing amplitudes with 

frequency. The variations of the soil, the mass of the building, and the number of storeys result in a shift of 

amplitudes, a shift of frequencies or in very similar high-frequency amplitudes. The infinitely high wall seems 

to be acceptable for high frequencies, more realistic than the strong reduction of a rigid building. At low 

frequencies however, a rigid model yields good results. The combined rigid and high-building prediction 

curves and a simple transfer formula from velocity to sound pressure allow a simple and fast prediction of 

vibration and noise. 
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