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Abstract
Measuring and monitoring background noise levels in active offices is a crucial issue to assess comfort
conditions and enhance the technical standards. Machine learning-based algorithms have been proposed in
previous work to identify and measure noise sources during working days in a test office. Two unsupervised
clustering techniques, i.e. Gaussian Mixture Model and K-means clustering, gathered the recorded sound
pressure levels finding patterns. After the clustering, preliminary labelling of the sources (i.e., human,
mechanical, traffic, and so on) was made employing statistical and metric assumptions. In the present work,
the method has been tested in a wider scenario: three offices were recorded during two working days. Thus, the
ML-based algorithms were run finding contributions of the noise sources within the offices. The discrimination
of noise sources was carried out by improved statistical and metric properties, which were briefly discussed.
Results encourage testing ML algorithms in long-period monitoring.
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1 Introduction

One of the main acoustic challenges of the recent ISO 22955:2021 is to limit the worker’s exposure to ambient
noise. A-weighted, equivalent continuous sound level LAeq,T was proposed by ISO 22955:2021 to measure the
workstation noise level. Target values were set for different types of activity (see table 1).

Many sound sources can contribute to workstation noise: human noise, mechanical noise, traffic noise from
outdoor, ... In the field of open-plan office acoustics, the discrimination between noise sources is usually made
with percentile levels. [1, 2].

This kind of approach requires either the knowledge of the distribution of the occurrences of the sound levels
in the environment during monitoring time or supervision by the operator. For these reasons, unsupervised
algorithms can represent a useful tool for accurate monitoring without the need for human supervision.

This work aims to identify sound sources via an unsupervised statistical analysis of long-term
monitoring [3]. Data population obtained from the recording done in three active offices were processed with
algorithms used in unsupervised learning to find patterns and create clusters. Then, sound sources were tagged
by associating to each cluster - "human" or "mechanical" in these preliminary cases. Algorithm results were
compared with equivalent continuous and percentile sound levels.

2 Description of the three-steps procedures

The unsupervised analysis proposed here is based on two Algorithms. Algorithm 1 performs the clustering
via GMM and AIC. Algorithm 2 performs the clustering via KM and silhouette. Both Algorithms act in three
steps:

1. Preliminary clustering analysis, finding several numbers of candidate noise sources.

2. Selection of the best candidate through clustering validation.
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Table 1: Workstation noise level LAeq,T assumed for different types of activity, according to ISO 22955:2021.

Activities in its own space

Activity Target values (dBA)

Activity mainly focusing on outside of the room communication 55

Activity mainly based on collaboration between people at the
nearest workstation

52

Activity mainly based on a small amount of collaborative work 48

Activity can involve receiving public 55

Activities within the same space

Receiver space type Target values (dBA)

Informal meetings (open plan) 48

Outside of the room communication (phone) 48

Collaborative 45

Noncollaborative 42

Focussed phone 42

Focussed individual work 40

3. Final clustering analysis and association of each cluster to a noise contribute based on statistical
(Algorithm 1) or temporal (Algorithm 2) conditions.

In Algorithm 1, the first step performs the clustering via GMM. The procedure has been repeated with a
variable number of clusters k = 1, ..., 10. The EM algorithm returns the mean µk, the standard deviation σk, and
the mixing proportions πk of each Gaussian curve (see eqs. 1 and 2). In order to achieve meaningful results, the
EM algorithm is initialized by means of the components, the covariance matrices, and the mixing proportions.
An option has been set in order to replicate the algorithm several times starting from different points, then the
maximum likelihood is fitted. A covariance matrix of diagonal type is set, whereas the mixing proportions are
used with default parameters, which means that the initial values are uniform. In the second step of Algorithm
1, the optimal number of clusters is investigated through the AIC calculation according to equation 5. The
goodness of fit is rewarded through the likelihood function and, at the same time, the model is penalized if it
exceeds in complexity. The number k corresponding to the elbow of the curve is used to perform again the
GMM with the optimal number of clusters. Then, the association among numerical and real sources existing
within the office is made. Since in the dataset used in the present study the traffic noise is negligible, in the
third step of Algorithm 1 the way to discern the type of source was statistical. The standard deviation is used
as the parameter to distinguish the nature of the source, either mechanical or human. It is expected that a low
s.d. belongs to the mechanical sources, whereas a high s.d. to human activity.

Instead, Algorithm 2 is based on KM and silhouette. The K-means clustering was set using the square
Euclidean distance as the metric to be minimized within the cluster ck and all over the k clusters (see eqs. 3
and 4). Then, as seen above for GMM, a specific option to replicate the algorithm starting from different
points was set to avoid the use of the same centroids in the iterations. Also, Algorithm 2 was repeated with a
variable number of clusters k = 2, ..., 10. Then, the silhouette method was used to choose the best model among
candidates. The mean values of the silhouettes of each cluster provide a metric to evaluate the clustering
goodness. Thus, the clustering validity is rated finding the highest silhouette coefficient SC (equation 9) among
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Algorithm 1: GMM and AIC
Input: xi short-time levels octave-band filtered, f (xi) target distribution
Output: Lhuman; Lmech

1 init EM
2 init Lmech, Lhuman = −∞

3 // first step
4 for k = 1 : 10 do
5 (πk, µk, σk) = EM(k, xi)
6 end
7 // second step
8 for k = 1 : 10 do
9 AIC(k) = 2k − 2 ln (L(πk, µk, σk; f (xi)))

10 end
11 E = elbow(AIC(k))
12 // third step
13 (π j, µ j, σ j) = EM(E, xi)
14 for j = 1 : E do
15 if statistical condition then
16 Lhuman = 10 log

(
10µ j/10 + 10Lhuman/10

)
17 end
18 else
19 Lmech = 10 log

(
10µ j/10 + 10Lmech/10

)
20 end
21 end

candidate models, which means for a various number of clusters k, as described in the previous section. Then,
KM is performed again with the optimal k. The subdivision between mechanical and human noise is based
on a metrical hypothesis. The average distance of data points and the centroid within a cluster describes the
density of clusters. A short distance can be associated with a mechanical source whereas a large value to human
activity. The size of clusters can bring information about the frequency – in the temporal meaning – of the sound
sources. For instance, a quiet office, with a low human activity within, will have a corresponding cluster with a
large percentage of samples relative to the whole population.

2.1. Clustering algorithms
Clustering algorithms allow the identification of different candidate noise sources by analyzing the data

collected from a recording. In this section, the Gaussian Mixture Model (GMM) and the K-Means Clustering
(KM) are introduced.

GMM is a clustering method that decomposes the original model data into a sum of gaussian curves.
Assuming a set of observations x1, . . . , xn (e.g. the short-time equivalent levels recorded), the Gaussian
probability density function f (xi) of these observations – in the following called target density – can be
expressed as a sum of K Gaussian densities fk(xi, µk, σ

2
k):

f (xi) '
K∑

k=1

πk fk(xi, µk, σ
2
k) (1)

where πk are the so called mixing proportions [4], non-negative quantities that sum to one; that is,

0 ≤ πk ≤ 1 (k = 1, . . . ,K)
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Algorithm 2: KM and Silhouette
Input: xi short-time levels octave-band filtered, f (xi) target distribution
Output: Lhuman; Lmech

1 init KM
2 init Lmech, Lhuman = −∞

3 // first step
4 for k = 1 : 10 do
5 ck = KM(k, xi)
6 end
7 // second step
8 for k = 2 : 10 do
9 s(k) = Silhouette(ck; f (xi))

10 end
11 A = k : maxk (s(k))
12 // third step
13 c j = KM(S C, xi)
14 for j = 1 : S C do
15 if metrical condition then
16 Lhuman = 10 log

(
10centroid(c j)/10 + 10Lhuman/10

)
17 end
18 else
19 Lmech = 10 log

(
10centroid(c j)/10 + 10Lmech/10

)
20 end
21 end

and
K∑

k=1

πk = 1.

The likelihood function for a mixture model with K univariate Normal components is:

L(x) =

n∏
i=1

K∑
k=1

πk fk(xi) =

n∏
i=1

K∑
k=1

πk
1√

2πσ2
k

e
−

(xi−µk )2

2σ2
k . (2)

The equality in 1 is usually realized by the maximum likelihood optimization algorithm, e.g. the Expectation-
Maximization (EM) [5]. In the context of background noise in open-plan offices, Dehlbaek et al. [6] proposed
a preliminary analysis based on GMM. The probability distribution function of equivalent levels recorded in
several offices is fitted with one or more Gaussian curves. The means a Gaussian curve is taken as the sound
pressure levels of a sound source. If two normal curves are used, then the higher mean is identified as human
activity and the lower one as the background noise in the office. The contribution of human activity is taken
into account only if the 10th statistical percentile of the corresponding curve is greater than the background
noise measured in unoccupied conditions.

While GMM is based on the statistical properties of the data population, KM optimizes a metric distance
of each single data point to form clusters. The set of observations x1, . . . , xn can be clustered into a set of K
clusters, C = {ck; k = 1, . . . ,K}, where µk is the mean of cluster ck. The squared Euclidean distances between
µk and the points in cluster ck is defined as:

J(ck) =
∑
xi∈ck

||xi − µk||
2. (3)
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Figure 1: The three unsupervised methods used in this work. In figure (a) the continuous line represents the
cumulative distribution of the recorded SPL of a sound level meter and the * corresponds to the 90th

Percentile Level L90. In figure (b) the continuous line represents the occurrences distribution of the same
measurement. The asymmetrical distribution can be decomposed into four Gaussian curves. The mean values
of Gaussian curves indicated with * correspond to the sound levels attributed to each sound source. In figure

(c) the four histograms represent four different clusters obtained via K-means clustering.

The goal of K-means is to minimize the sum of the squared Euclidean distances over all K clusters:

J(C) =

K∑
k=1

∑
xi∈ck

||xi − µk||
2. (4)

The process converges to a local minimum in two steps: first, the optimal partition for a given set of µk is
found; then, the cluster centroids are computed once C is fixed [7]. A K-means clustering was preliminary
used by Wang and Brill to monitor the noise levels in occupied and unoccupied conditions in several K-12
classrooms [8].

2.2. Clustering validation
Clustering algorithms may produce redundant results, i.e. a number of clusters greater than the number

of actual sound sources. Indeed, the maximum likelihood principle results in selecting the highest possible
dimension [9]. The clustering validation allows to assess the best model among candidates through specific
metrics. In this work, the Akaike Information Criterion (AIC) [10] and the silhouette method [11] have been
used to assess the optimal number of clusters for, respectively, GMM and KM.

AIC provides an assessment based on a reward for the goodness of fit to help in choosing the best candidate
as well as a penalization for the complexity of the model. Assuming k as the number of estimated parameters
in the model and L the likelihood function defined above, the AIC is:

AIC = 2k − 2 ln [L(x)] . (5)

The first term of eq. 5 is the penalization of the complexity, whereas the second term concerns the goodness
of the fit. Thus, the greater the likelihood the lower the AIC. It follows that the lowest value indicates the best
model. Plotting the AIC obtained with different values of K, the elbow of the curve highlights the optimal
number of clusters.

The silhouette method is a quantitative assessment of the degree of separation among the clusters. Assuming
i as a data point in the cluster Am, the mean distance between i and the other data points in the same cluster is:

a(i) =
1

|Am| − 1

∑
i, j∈Am,i, j

d(i, j) (6)
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where d(i, j) is the distance between i and j in the cluster Am.
Thereafter, the mean dissimilarity of i to another cluster Bn is defined as the mean distance between i and

the other points l in Bn. Thus:

b(i) = min
1
|Bn|

∑
l∈Bn,l,i

d(i, l) (7)

is the shortest mean distance between i and all the other points in the other clusters. Of course, this is possible
only with a number of clusters K > 1. The cluster with the smallest mean dissimilarity is defined as “neighbor"
and represents the second-best choice for i. The silhouette value s(i) is defined as:

1 − a(i)/b(i) if a(i) < b(i),
0 if a(i) = b(i),
b(i)/a(i) − 1 if a(i) > b(i).

(8)

Thus −1 ≤ s(i) ≤ 1, which means that i is properly clustered if s(k) is near 1, while it is wrongly clustered if
s(i) is near -1, whereas an s(i) near 0 means that i can be assigned to either A or B. The silhouette values s(i)
express how each data point is well clustered. Hence, the mean of each silhouette value of clusters s̄(i) can be
considered as a metric for the whole clustering process. The silhouette coefficient SC then is defined as:

S C = max
k

s̄(k) (9)

where k is the number of clusters. The silhouette coefficient, as well as being one of the most well-known
clustering validation indices, is assessed as very viable among different kinds of datasets [12].

3 Method

In order to evaluate the performance of the two methods, the following scenarios were monitored:

Office A A mid-sized open plan: 8-12 workers varying during the day; Activity mainly focusing on outside of
the room communication

Office B A mid-sized open plan: 10-12 workers varying during the day; Activity mainly based on a small
amount of collaborative work

Office C A small-sized open plan: 0-2 workers varying during the day.

All open-plan offices were treated with COVID19 screen (120 cm height) without further acoustic
improvements. The acoustic quality of all the spaces can be assumed as poor.

Sound pressure levels monitoring was carried out throughout two working days, so to allow to record enough
data. A statistical data population was obtained by recording short-time equivalent levels, 100 ms integration
time, octave-band filtered (125 Hz - 4000 Hz), for an amount of time long enough to validate the central limit
theorem.

The recordings were post-processed via two algorithms proposed in previous work [3]. The latter exploit
two unsupervised clustering techniques commonly used in machine learning [13]: Gaussian Mixture Model
(GMM) and K-means clustering (KM). First of all, the clustering validation step allows to set the best number of
clusters available in the recorded population data. Each cluster represents a sound source, this is the assumption
underlying this step. The metrics for the validation are the Akaike Informational Criterion (AIC) for GMM and
the silhouette coefficient (SC) for KM [10, 11]. The corresponding elbow of the AIC curve and the greatest SC
value are respectively the best number of clusters for each algorithm.

After the number of sound sources is discovered, their respective sound pressure levels (SPLs) are achieved
via GMM and KM. GMM splits the data basing on probability assumptions, describing each cluster with a
Gaussian curve. KM shapes the clusters basing on the minimization of the distance within the data [14]. In
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(a) Office A - Day 1 (b) Office A - Day 2

(c) Office B - Day 1 (d) Office B - Day 2

(e) Office C - Day 1 (f) Office C - Day 2

Figure 2: Spectral analysis: results of the spectra recorded in the three offices for day 1 (on the left) and day 2
(on the right).
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this method, the means of the Gaussian curves and the centroids, i.e. the center of gravity of each cluster, are
assumed as the SPLs produced by the sound sources.

The qualitative analysis concerns the detection of the kind of source, either mechanical or human. In the
previously cited work [3], the identification of the kind of sound source has been made through the standard
deviation (SD) of the Gaussian curves of each cluster obtained via GMM. With an SD lower than 5 dB,
the source is labelled as mechanical, otherwise is considered due to human activity. Concerning the KM, a
comparable metric of the s.d. was found in the average intra-cluster distance (AICD) among data points, i.e.
the average distance of data points belonging to the same cluster.

4 Results

The outcomes concern the whole recorded working days of each office. The best number of clusters within the
recorded data is k = 2 for offices A, B, and C; thus, the expected soundscape made up by two sound sources, as
state above in the method section, is confirmed.

Once the number of clusters is set, the second step runs the algorithms, i.e. GMM and KM, and finds the
SPLs of each sound source. Table 2 shows the results of GMM and KM of each office and day for the octave
band from 125 up to 4000 Hz and the A-weighted equivalent level. Here, values are labelled as “mechanical”
or “human” according to the threshold of 5 dB of the correspondent Gaussian curve. Brackets contain SD and
AICD respectively for GMM and KM.

Furthermore, a preliminary method to assess the reliability of the algorithms is investigating the spectra
obtained. Figure 2 shows all the spectra obtained in each office for each day and each algorithm in the octave
bands from 125 to 4000 Hz. Blue and red lines indicate respectively the outcomes obtained by GMM and KM.
Dashed and solid represent respectively mechanical and human sources.

Spectral behaviour and sound levels of identified sound sources are consistent with the physical scenarios
in the measured offices. Indeed, the level of "human" source is influenced by the number of people within the
office and its spectrum fits with speech power level, according to ISO 3382-3. Moreover, office equipment and
HVAC can show a noise similar to ones measured through "mechanical" source. Furthermore, these methods
can be used to measure the HVAC noise in dynamic scenarios [15].
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Figure 3: Relationship between the standard deviation SD and the average intra-cluster distance AICD. White
and black diamonds represent respectively the mechanical and human noise detected during the monitoring.
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The preliminary analysis of these three active offices seems to confirm threshold values used by algorithms
to identify and label sources. Previous works about monitoring systems or human activities have shown an
SD threshold of about 4-6 dB to split the two kinds of sources [16, 17]. The method used in the present
paper sets the threshold to 5 dB. Values of SD smaller than 5 dB are deemed to belong to a mechanical sound
source, otherwise to human ones. At the same time, it is important to find a similar metric for KM. Thus, a
parameter that can describe the size of the cluster is the average distance of the data point within the same
cluster, i.e. the intra-cluster distance AICD. Then, the correlation between SD and AICD helps to find the
correspondent threshold by AICD. Figure 3 plots the measured SD and AICD for both mechanical and human
sources. Mechanical sources appear more scattered, maybe because of the several devices within the offices;
whereas the correlation concerning the human sources has an R2 equal to 0.94. Except for the SD value
measured in the 125 Hz octave band in office A during day 1, the SD equal to 5 dB seems to be confirmed as
the threshold to split the two kinds of sources.

5 Conclusions

Two ML-based methods to measure more than one sound source in open-plan offices at the same time are
presented. In the case under study, three open-plan offices were used to check both unsupervised methods.
Sound sources were tagged, respectively, as ’mechanical’ and ’human’. Spectral behaviour and sound levels of
identified sound sources are consistent with the physical scenarios in the measured offices (number of people,
office equipment, etc...). Results can usefully contribute to measuring the workstation noise level, as introduced
by recent ISO 22955:2021.
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