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Abstract 

The propagation of high intensity impulsive noise poses challenges for the assessment of noise exposure for 

personnel and communities. Large pressure perturbations give rise to shock formation, enhanced energy 

dissipation and frequency content redistribution thereby ruling out the possibility to linearize the propagation 

equations. Common approaches involve computationally demanding frequency-domain solvers. The proposed 

algorithm solves the Nonlinear Progressive Wave Equation (NPE) with a time marching scheme that exploits 

a moving window coordinate frame and operator splitting technique. A Flux Corrected Transport scheme 

provides second-order accuracy for the nonlinear term and well-documented shock capturing capabilities. The 

observation of weakly non-linear waves during an on-site test campaign with a large caliber weapon offered 

the opportunity to compare the NPE and a linear solver, to gain scientific insight into the propagation of these 

pulses. Different sound exposure metrics are evaluated at various locations down the propagation line for 

benchmarking and the intrinsic limitations of the most pertinent standards are discussed. 

Keywords: NPE, nonlinear, acoustics, propagation, FCT. 

1 Introduction 

Large-calibre weapons release a vast amount of acoustic energy within a time interval of few milliseconds, 

causing hazard for the auditory apparatus of the involved personnel and annoyance to nearby residential 

communities. Optimal mitigations (e.g. noise absorption barriers) and corrective measures can only be adopted 

after accurately modelling the Weakly Nonlinear Pulse Propagation in its complexity.  

    The challenge has been historically addressed with standards (ISO17201 [1], ISO9613 [2], Nordtest [3]) and 

in-house numerical propagation algorithms, but the lack of a comprehensive assessment framework is what 

motivates the present work. Leissing [4] and Young et al. [5] contributed by conducting studies on the 

propagation of explosion-originated blast waves, whereas examples of underwater propagation of strongly 

nonlinear shockwaves are also extensively documented ( [6], [7]).  One of the most acknowledged formulations 

of the nonlinear wave equation is the Khokhlov–Zabolotskaya–Kuznetsov equation, usually solved in the 

frequency domain. Aside of the computational burden, this spectral method is limited to narrowband frequency 

signals [8], typically ultrasonic beams with strong diffraction phenomena [9]. The Nonlinear Progressive 

Equation [10] illustrated here embeds in its time-domain formulation the capability to handle nonlinear 

broadband sources, provided the spatial discretization is carefully determined. The flexibility of the operator 

splitting approach introduces modularity in the algorithm and the Flux Corrected Transport scheme is designed 
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to preserve positivity and limit the numerical diffusivity when solving for large discontinuities such as shocks 

[11] . The solver is developed for the 1D formulation of the NPE equation, including atmospheric dissipation, 

refraction, nonlinearity and spatially varying sound speed.  

Sec.2 contains a concise overview of the range of validity of the NPE equation and its structure. Sec.3 explains 

the choices made in the numerical implementation and is concluded by the validation of the results against an 

analytical solution. In Sec. 4, the equipment used in the measurement campaign is illustrated. Sec. 5 is devoted 

to the presentation and discussion of the results obtained, whereas in Sec. 6 the conclusions are drawn and 

directions for the continuation of this research are outlined.    

2 Theoretical background 

Acoustics boils down to the study of the pressure perturbation propagating in a medium with respect to the 

unperturbed ambient state. Whenever this deviation from the initial state exceeds a certain magnitude, the 

phenomena occurring can only be described by a nonlinear mathematical model. Shock formation, nonlinear 

steepening, harmonic redistribution, shock coalescence and enhanced energy dissipation are the main 

processes described in literature for nonlinear propagation ([5], [6], [7], [8]). There is no unique consensus on 

the precise value that marks the onset of nonlinearities. Values of 154 [dB re 20 μPa] and 130 [dB re 20 μPa] 

are often regarded as a reference ( [1] , [3]). The nature of the logarithmic scale makes the dividing line even 

more ambiguous, as it corresponds to an interval ranging from 1000 [Pa] to 70 [Pa]. 

    McDonald et al. [10] developed the original formulation of the Nonlinear Progressive Wave equation to 

study underwater high-intensity acoustic phenomena known as caustics. Its validity is restricted to weakly 

nonlinear perturbations travelling along a principal direction in a quiescent medium. The sound speed is 

allowed to fluctuate of a quantity c’ from the ambient value c0, so that the effective sound speed is c = c0 + c’. 

These variations must be limited throughout the entire propagation (c' << c0). Although extended formulations 

are available [12], the canonical form of the NPE can only accurately resolve shockwaves within 10° from the 

main propagation direction. For the complete derivation of the equation, the reader should refer to the original 

publications ( [13], [14]). If only the one-dimensional terms are retained, the NPE simplifies to Eq. (1), where 

R is the dimensionless acoustic pressure: 
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Primed variables (ρ’, p’, c’ )  indicate the state of perturbation with respect to the initial undisturbed condition 

(ρ0, p0, c0 ). The first linear term on the right side member accounts for refraction and is responsible for the 

travelling of the waveform within the moving window. The second term includes nonlinearities and the third 

term represents atmospheric absorption. As a consequence of a coordinate transformation, the computational 

window moves forward along the direction x with the constant ambient state speed of sound c0.  

High intensity pressure perturbations affect the speed of the moving waveform in such a way that a distortion 

occurs: 
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This first order expansion [15], where v is the wave particle velocity of a plane wave, introduces a direct 

proportionality between the acoustic pressure and the real speed of sound, yielding different portions of the 

waveform to travel with spatially varying speed. The coefficient of nonlinearity for air is β = 
1+ 𝛾

2
 = 1.2. 
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    Atmospheric absorption includes two dissipation mechanisms: thermoviscous and relaxation losses. The 

first phenomenon is dominant, and will be the only one included in equation (1) through: 
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Sound diffusivity encloses the thermophysical effects of the bulk viscosity (η), the shear viscosity (μ), the 

thermal conductivity (κ) and the specific heat at constant volume (cv) and pressure (cp). 

 

3 Numerical implementation 

To solve the one-dimensional NPE (Eq. 1), the operator splitting technique represents a versatile choice to 

solve sequentially and in a segregated fashion each term. It is based on the assumptions that all the terms are 

independent and that the time step is small enough [8]. The order in which the terms are solved is not relevant 

[17]. At the beginning of each time-step, the absorption term is solved with the Crank-Nicholson implicit 

scheme, a consolidated algorithm that provides unconditional numerical stability. This partial solution provides 

the initial field for the nonlinear term algorithm. Originally developed by Boris et al. [11], the Flux Corrected 

Transport method is designed to be second-order accurate, monotone, conservative and able to preserve 

positivity. It does so with two consecutive stages: the quantity is first convected and diffused, with the 

minimum amount of numerical diffusion required to prevent artificial oscillations and enforce positivity. Raw 

anti-diffusive fluxes are then computed and corrected in a second intra-step stage, by means of nonlinear flux-

limiters intended to inhibit the generation of new local minima or maxima. The present work follows the 

formulation proposed by Leissing [4]. 

    The initial acoustic pressure field is designed to match the experimental curve measured by the microphone 

located at 15 [m] from the muzzle (Fig. 1 – Left). The Friedlander wave model has been successfully used ( 

[18], [19], [20]) to reproduce blast signatures of impulsive nature (overpressures), but repeated observations 

of large calibre weapons signatures highlighted the poor performance of the standard Friedlander model in 

matching the profile of the prominent and long lasting negative phase. A numerical waveform that inadequately 

represents the target experimental curve in time domain, will inevitably fall short in capturing the frequency 

content. Therefore, among the variants of the original Friedlander formulation, we selected one that stands out 

for its accuracy and does not depend on an empirical estimate of the explosive charge. It uses a cubic expression 

for the negative phase [20]: 
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The semi-empirical piecewise definition allows to tune the positive and negative phase durations (td, t-
d) and 

the absolute values of the positive and the negative peak amplitudes ( pr,max, pr,min). 
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Figure 1 – Left: Time domain comparison of semi-empirical Friedlander model and measured signal at x = 

15 [m]. Right: Single-sided spectra of the initial waveform  

 

 

To avoid a loss of frequency content at the edges of the domain, the waveform is fully included in the window 

and surrounded by a sufficient number of wavelengths to account for leading and trailing quiescent intervals. 

Additionally, the length of the window must take into consideration the drift implied by the perturbation of the 

sound speed (c’). Multiplying the maximum expected sound speed by the propagation time provides an 

informed estimate of the distance travelled within the window [21]. It was found that a total length of L = 35 

[m] satisfies both requirements. Given the number of spatial (Nx) and temporal points (Nt), the boundary 

conditions enforce the absence of perturbation sufficiently far from the shock: 

 

0 0
x
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N
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Steep pressure gradients and the shock formation make the grid's spatial resolution crucial. A common practice 

is to define the discretization based on a representative frequency. The signal under examination is broadband, 

with relevant frequencies ranging from 30 [Hz] to 8 [kHz]. It is conservative to assign 35 grid cells per 

characteristic wavelength, computed using the highest frequency of interest (∆𝑥 = 1.2 ∙ 10−3 [𝑚]), whereas 

the temporal resolution is ∆𝑡=
∆𝑥

𝑐0
= 3.5 ∙ 10−6 [𝑠].   The computational window advances of exactly one 

spatial grid point at each time step, providing numerical stability and making it straight forward and 

interpolation-free to post-process the results in the time domain.  

3.1 Validation with analytical solution 

    Although no benchmark for the complete NPE equation is available, the mathematician Guido Fubini (1935) 

developed an analytical solution of the inviscid Burger equation [16]. Fubini’s solution is valid for mono-

frequency plane waves that propagate in a one-dimensional domain: 
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No losses are included and its validity is limited up to the shock formation (σ = 1). As is done in [4] , the NPE 

benchmarking is done on a reduced version of Eq. (1), where only nonlinearity is taken into account: 
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Nonlinearity affects the propagation in a cumulative way. The positive peak of the sinusoid accelerates, while 

the trough decelerates. The shock, a mathematical discontinuity in the pressure field forming at  𝑥̅, corresponds 

to a nearly infinitely steep curve in the discretized numerical domain, the characteristic N-shaped sawtooth 

wave (Fig. 2). The major implication is that the frequency spectrum undergoes a reshaping. The local increase 

in entropy caused by steepening acts as a dissipation mechanism that depletes the initial energy carried by the 

signal's principal harmonic and transfers it to a newly formed cascade of higher frequencies.  

    To verify that, a sinusoidal waveform of amplitude 1 [kPa] and frequency 0.1 [Hz] is propagated in air at 

ambient conditions with speed c0. The chosen spatial resolution for the benchmark case is ∆x = 0.0049 (m), 

corresponding to  
𝜆

100
 . The simulation ran for 66500 time-steps (∆t = 0.014 [s]), enough to propagate the sine-

wave slightly beyond the shock formation distance. 

 

 

   
 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

Figure 2 – Left: Comparison between the time-domain numerical solution for the plane inviscid Burgers 

equation and the theoretical Fubini solution [10] in the pre-shock region. Right: Evolution of the amplitude 

of the harmonics in the pre-shock region, normalized by the maximum initial value. 

 

The steepening rate of the numerical solution in the time domain closely resembles that of the Fubini solution. 

The overestimation of the second harmonic takes the form of a constant offset, suggesting that the growth rate 

is not mispredicted. The gap rather originates due to a difference in the nature of the initial waveforms. The 

sinusoidal wave fed to the NPE solver is built analytically, while Fubini's solution at t = 0 [s] is a truncated 

Fourier series. Relative error metrics are not representative, because they disproportionately weigh the errors 

where the exact value is close to zero. The coefficient of determination (R2) is a more appropriate absolute 

metric that assigns errors of 0.9962, 0.9955 and 0.9994  respectively to the first, second and third harmonics. 

Ultimately, there is evidence that the implemented scheme closely reproduces the nonlinear effects of wave 

steepening while preserving the wave amplitude and its period.  
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4 Experimental setup 

 

The test campaign's primary objective is to investigate the free-field propagation of weakly nonlinear waves 

radiating from the muzzle of a Howitzer 105 mm. The measurement system consists of four GRAS 46BG 1/4" 

pressure microphones (Frequency range: 3.15 Hz - 70 kHz, Dynamic range: 60 dB - 184 dB) and two GRAS 

46AM 1/2" free-field microphones (Frequency range: 3.15 Hz – 31.5 kHz, Dynamic range: 25 dB - 49 dB). 

The sampling is performed at 70 [kHz] by two synchronized National Instruments modules (PXI-4462, PXI-

4472) mounted on the same PXIe chassis. The recording of the data is triggered manually before every shot.  

 

Table 1 – Atmospheric data 

 

 

 

 

 

 

 

The microphones are placed at a height of 1.5 [m] from the ground, as prescribed by [1] and [2] . Atmospheric 

conditions are monitored by a real-time operated weather station (Table 1) and averaged over the recording 

period. In order to mitigate the effect of wind and spurious background noise, each microphone is equipped 

with a foam windshield. The propagation path stretches along a grassy and mostly flat terrain, with occasional 

irregularities and dunes not exceeding 1m. The accurate modelling of the ground topography, even though 

essential, is beyond the scope of this work. Sources of uncertainty such as the receiver’s position, the 

measurement chain and weather changes contribute to an extended measurement uncertainty Uk = 1.96 = ± 2.77 

dB (95% confidence interval).  

 

 

   Figure 3 – Location of the microphones on the propagation line 

 

5 Results 

When quantifying the background disturbances, the spectra are averaged over three samples of 5 [s] each for 

the background noise, and three shots. Except for the 16 [kHz] cluster in Fig.2b, every frequency band is 

dominated by the shot’s Sound Pressure Level by at least 10 [dB] [22]. The band-averaged 95% confidence 

intervals are shown in Fig.4 for the background noise and the Howitzer shot. 

Quantity Value 
Ambient temperature 290.15 [K] 

Atmospheric pressure 101250 [Pa] 

Relative humidity 67.9 % 

Wind  3.9 [m/s] (295°, W/NW) 
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(a)                     (b) 

 

Figure 4 – Background noise quantification at (a) 15 [m] and (b) 276 [m] from the source 

 

The time domain signal at each microphone location is cropped with a window length of 1 [s] to include the 

entire pulse (Fig. 1). The frequency domain counterpart is processed with one octave and 1/3 octave filter 

banks, to meet the standards’ requirements ( [1], [2], [3]). Given the sensitivity of the numerical solver to the 

initial conditions (Eq. 4), it was decided to select a single representative shot and investigate its propagation.  

This choice, although statistically sub-optimal, is motivated by the intention to preserve the tight link between 

one specific curve’s time-domain parameters and its frequency content. Future work should certainly include 

more extensive statistical considerations. No directivity information is included in the framework, as only the 

50° propagation path is under exam at this stage.  

    Table 3 summarizes each standard’s approach to the calculation of the noise level at the receiver.  The excess 

attenuation Ae(r), computed similarly for each standard, includes ground effects, atmospheric absorption, 

geometrical divergence, barriers and diffraction. These quantities depend on the distance from the source r and 

the direction of the propagation line with respect to the line of fire α.  

None of the standards is valid in the nonlinear range and for calibers larger than 20 [mm]. NT Acou 099 and 

ISO 9613 are based on the hypothesis that the acoustic event is continuous, neglecting the implications of the 

impulsive nature of a firearm shot.  

 

Table 2 – Overview of the available standards 
 

 

 
 

 

 
 

 

 
 

 

 
 

*Not specified by the standard, but a value of ± 3 dB can be assumed for the current configuration 

 

Within Ae, spherical divergence is a dominant attenuation mechanism, being responsible for 6 dB of attenuation 

every doubling of the distance from the source [22]. Introducing an adjustment to the mono-dimensional NPE 

solution, although far from conclusive or rigorous, gives an educated estimate of the order of magnitude. The 

proposed correction [23] compensates for the spherical decay by multiplying the numerically obtained acoustic 

pressure field at each receiver’s location by  
𝑟0

𝑟
 . It derives directly from the geometrical observation that a 

Standard Receiver noise (dB)                  Legend Accuracy 

    

ISO 17201 [1]           1( 1, )E eqL r L A r             LE : sound exposure level 

Lq : angular source energy 
distribution level 

± 20 dB 

ISO 9613 [2]       
C( , ) ( )( )fT W eL r L D A r     LfT : equivalent continuous 

downwind sound pressure level 

LW : sound power level 
Dc: directivity correction 

± 3 dB 

NT Acou 099 [3]         
pI pIL ) L ( ,10 m) ( )( , eAr r    LpI :  time-weighted sound pressure 

level (I = 35 ms) 
N.A.* 
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spherical plane wave departing from a point source carries an acoustic pressure perturbation that decays by 1/r 

[22]. It is 1 when the receiver (r) is at the source position (r0 = 15 [m]).  

    The linear solution (β = 0) with thermoviscous effects (TH) included is assumed as the baseline case. To 

illustrate the relative effects of nonlinearity (NL) and the divergence correction (DIV), these two propagation 

regimes are compared with experimental results and the standards’ predicted values.  

 

Figure 5 – Sound Pressure Levels, used in standards [2] and [3], at increasing distance from the Howitzer 

105 mm  

  

Figure 6 – Sound Exposure Levels, used in standard [1], at increasing distance from the Howitzer 105 mm 
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Except for NT Acou 099, the standards and the linear solution display a steep degradation of frequency content 

above 1000 [Hz] (Fig. 6 and Fig. 7a). The divergence-adjusted nonlinear solution outperforms both the ISO 

standards in matching the experimental values in the high frequency range. This behavior is consistent with 

the harmonics generation mechanism, absent in the linear domain and in the standards.  

   

      (a)                     (b) 

 

Figure 7 – (a) Attenuation levels at 130 [m], relative to the signal at 15 [m] and (b) decay of the maximum 

amplitude peak with distance   

 

Fig. 7b shows that the nonlinear solution outperforms the linear one in reproducing the steep decline that occurs 

within the first 100 [m] of propagation. Adding the divergence attenuation to the mono-dimensional NPE 

solution inevitably overestimates the amplitude’s decay (Fig. 7b) with respect to the measured values. If 

spherical divergence was embedded in a three-dimensional version of Eq. (1), the attenuation resulting from 

purely nonlinear effects would be smaller, as a consequence of the divergence-driven reduction of the peak 

dependent sound speed perturbation c’ (Eq. 2) .  

 

      (a)                     (b) 

 

Figure 8 – Absolute value of the difference between the experimental values and noise levels predicted by 

the NPE solution and the standards. Each frequency band is averaged over the five propagation distances. 

 

As Fig. 8 displays, the numerical solution overall behaves better at higher frequencies and, unlike all three 

standards, never departs from the measured spectra of more than 15 [dB].   
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6 Conclusions 

A weakly nonlinear pulse from a large caliber weapon was propagated for 261 [m] in air, using a one-

dimensional solver for the Nonlinear Progressive Equation which accounts for non-linearities along the 

propagation as well as thermoviscous effects. A correction is implemented to account for spherical divergence. 

The solver is shown to behave adequately on Fubini’s solution. The analysis of the measured and computed 

spectra confirmed the inadequacy of the present standards to accurately estimate the receiver noise over the 

entire frequency range, for a large caliber weapon for which no standard applies. When existing small and 

medium caliber standards are nevertheless applied, NT Acou 099 seems to perform best at frequencies higher 

than 500 [Hz], whereas the ISO standards better predict the spectrum in the 200 [Hz] to 3000 [Hz] range (Fig. 

8). The capability of the nonlinear solver to closely predict the rate of amplitude decay (Fig. 7b), to provide 

good agreement with the experimental data in the high frequency range (Fig. 6 and Fig. 8b) and to limit the 

prediction errors to 15 [dB] (Fig.8) indicate a promising research direction. However, NPE’s prediction of the 

low-mid frequency spectrum will be further improved including an upgrade to handle multi-dimensional 

phenomena such as spherical divergence, diffraction and ground effects.  
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