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Abstract
The measurement of the random incidence absorption coefficient in a reverberation room according to the
international standard ISO 354 requires a uniform damping of the modes of vibration composing the sound
field. This requirement is violated when an absorbing specimen is mounted inside the room, resulting in decay
curves with characteristic multi-exponential slopes when measured with an omni-directional microphone.
In this contribution we investigate the directional distribution of decay times of corresponding modes with
respect to their direction of propagation. The sound field is decomposed into its two-dimensional angular wave
number spectrum implicitly approximating the modes of vibrations as superposition of plane waves, followed
by Schroeder integration for each direction. Decay times are estimated from the respective directionally
dependent Schroeder integral and their distribution is compared to the reverberation times inferred from the
omni-directional decay curve using Bayesian statistics. Experimental results for a rectangular reverberation
room indicating an anisotropic sound field decay as well as non-uniform angular distribution of decay times are
presented.
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1 Introduction

The random-incidence absorption coefficient measured in a reverberation room imposes the requirements of
an isotropic and homogeneous sound field as well as an uniform damping of the modes constituting the latter.
Both requirements are expected to be violated during absorption coefficient measurements, at the latest when a
test specimen is placed in the room [1, 2]. Even though many efforts have been made to counteract this problem
–mostly involving attempts to increase the diffusion of the sound field by introducing scattering elements into
the laboratory room – the issue still remains resulting in a poor reproducibility across different laboratories [3].
Based on analytic investigations for rectangular rooms Hunt et al. [1] showed that axial, tangential, and oblique
modes inherit different damping constants for uniform and non-uniform distributions of boundary conditions.
They further showed that two groups of modes with distinctively different damping constants remain, if a single
surface is covered with an absorbing material, that is the groups with grazing and non-grazing incidence onto
the absorbing material. Kuttruff [4] later concluded that the energy decay curve (EDC) can be calculated as the
Laplace transform of the damping distribution, giving examples of distributions resulting in multi-exponential
EDCs. More recently, Nilsson [5] showed that the resulting EDC in a room with absorption concentrated on
a single surface is governed by two decay constants. This was also found by Balint et al. [6] who used a
Bayesian framework to estimate the decay constants from EDCs measured in a reverberation room. However
both methods lack spatial information about the damping of modes.
In [7, 8] the authors presented the directional energy decay curve (DEDC) – calculated as the Schroeder integral
evaluated on a plane wave decomposition of the sound field – for the analysis of sound field isotopy during the
decay process, giving insights into the angular uniformity of energy decay in the decaying sound field. This
contribution investigates the angular distribution of average decay times of modes grouped according to their
direction of propagation in the DEDC. It is expected that decay times of mode groups with a direction of
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propagation parallel to the absorber are governed by a longer decay compared to modes at oblique incidence.
We hypothesize that the omnidirectional EDC exhibits a multi-exponential slope, which reduces to a single-
exponential slope when the sound field is decomposed with respect to aforementioned mode groups.
This contribution is organized as follows: The first section briefly introduces the concepts for the sound
field decomposition and estimation of directional decay times using Bayesian statistics. The second section
introduces the experimental setup in a reverberation room without any diffusing elements occupied with an
absorber. The results and conclusions are presented in the last two sections of this paper.

2 Sound Field Analysis

2.1. Directional Energy Decay Curves

Spherical microphone arrays (SMAs) allow for the capture of directional room impulse responses (DRIRs)
retaining angular information about the sound field in the room [9]. Assuming a sound field composed of plane
waves, the sound pressure at the microphone positions of an SMA is found as [10]

p(k) = B(k)anm(k), (1)

where the matrix B(k) contains the angular as well as radial description of the array. The vector anm(k) contains
the spherical harmonic (SH) coefficients defining the wave number dependent amplitude density of the plane
wave sound field, also referred to as the spherical wave number spectrum [11]. By transforming anm(k) into
the spatial domain and subsequently solving Eq. (1) we decompose the sound field into a continuum of Q plane
waves [12]

a(k) = YWnmB†(k)p(k), (2)

where the (.)† operator denotes the Moore-Penrose Pseudo-inverse and Y is the steering matrix of the array
containing vectors of the SH basis functions evaluated at the q’th steering direction with elevation and azimuth
angles (θq, φq), respectively. The diagonal matrix Wnm contains Dolph-Chebyshev weights [12] for uniform
side-lobe attenuation. For a more in depth introduction into the required spherical array signal processing the
reader is referred to the literature by Rafaely [12].
In the following the spherical wave spectrum is assumed to reflect a two-dimensional projection of the
three-dimensional wave number spectrum of the modal sound field in a room as defined in Ref. [1]. In contrast
to the full three-dimensional spectrum, the spherical wave spectrum depends on the position of the receiver
in the room. While the superposition of plane waves is assumed to be a good approximation for the modal
sound field in a room [13], this local approximation results in a loss of information on the absolute resonant
frequency of the modes, but simply allows for separation in terms of the direction of propagation of the modes.
Exemplarily, all axial modes in a rectangular room correspond to a sum of two plane waves traveling in the
same respective directions.
To investigate the directional sound field decay we may finally calculate the DEDC as the Schroeder
integral [14] of the time domain angular wave number spectrum [7, 8]

d(t) =

∫ ∞
t
|a(τ)|2dτ, (3)

representing the decay of all modes corresponding to the respective directions (θq, φq).
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2.2. Decay Time Estimation

Multi-exponential decay processes measured with an omni-directional receiver are described using the decay
model by Xiang [15] as a sum of I distinctively different decay processes

ẽ(t) =

I∑
i=1

Aie
−13.8·t

Ti , (4)

where Ai and Ti are the amplitudes and decay times of the respective decay processes. In this work we
assume that the decay times correspond to two groups of modes: (1) with direction of propagation parallel
to the absorber and (2) with an oblique incidence on the absorber. Assuming that the modes in every group
share similar damping – an assumption which requires a convex room shape and boundary conditions without
significant changes inside a band of frequencies – we may therefore assume that the DEDCs of single directions
are governed by a joint mean decay time. As a result a first oder decay model is feasible for the estimation of
the directional decay times if all remaining directions of incidence and therefore their corresponding modes are
sufficiently suppressed. Consequently, the DEDC model reduces to

d̃(t, θq, φq) = A(θq, φq)e
−13.8·t

T (θq ,φq) , (5)

where A(θq, φq) and T (θq, φq) are the respective amplitudes and directional decay times.
The decay parameters of both models can be inferred using Bayesian statistics, where the relation between
measurement and model is encoded into a Student-T distributed likelihood-function [15]. Given that the
decay parameters follow a chosen prior distribution, their values can be estimated from their posterior
distributions under the observation of the likelihood distribution, that is the measurement data and the model.1

The underlying posterior distributions can be inferred using automated differentiation variational inference by
maximizing the evidence lower bound [16]. The posterior distributions are approximated as full-rank Gaussian
distributions, maintaining potential correlation between the model parameters. A set of most probable decay
parameters can subsequently be extracted using bridge sampling [17].
While the use of a first order model as in Eq. (5) may initially seem equivalent to a linear regression in
accordance with the international standard ISO 354 [18], it has to be stressed that the presented approach is
different for two reasons. Firstly, the full dynamic range of the decay process is used, rather than omitting the
initial 5 dB. Secondly, the Bayesian parameter inference avoids over-fitting and is numerically more robust
[15].

3 Experimental Setup

The directional sound field decay was investigated experimentally in a rectangular reverberation room at the
Technical University of Denmark (2800 Kgs. Lyngby, Denmark). For the present study all panel diffusers were
removed, ensuring a well defined multi-exponential decay process. An absorbing sample of glass wool with
a flow resistivity of 12.9 kPa · s/m2, a thickness of 100 mm, and a surface area of 10.8 m2 was placed on the
floor, a mounting frame was also omitted to avoid scattered reflections at its edges. The dimensions of the room
are (x, y, z) = (6.25 m, 7.85 m, 4.9 m) with an approximate volume of 245 m3. A sequential dual-layer SMA
centered at (2.98 m, 4.16 m, 1 m) (cf. Fig. 1) was sampled using a UR5 (Universal Robots, Odense, Denmark)
scanning robot arm moving a pressure-field 1/2 ′′ Brüel & Kjær type 4192 microphone. Each of the two radii
(r = (0.25 m, 0.45 m)) contained 144 sampling positions distributed according to an equal-area partitioning [19]
as well as additional sampling points inside each sphere for the stabilization of the eigenfrequencies of the
sphere [20]. Impulse response measurements were performed with the ITA-Toolbox [21] using exponential
sweeps driving a source mounted in the corner below the ceiling at approximately (0.2 m, 0.2 m, 4.7 m). The

1For an in depth derivation and explanation the reader is referred to the literature by Xiang et al. [15]
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Figure 1: The experimental setup with source and receiver positions as well as the absorber position in the
reverberation room. For better visual interpretation only sampling positions on the outer sphere are shown.

sampling duration was 2.5 h with temperature changes below 0.3 ◦C during the procedure.
The estimation of the angular wavenumber spectrum was performed for a SH order N = 7 for 200 steering
directions on a uniform grid [19]. The Dolph-Chebyshev weights were chosen to achieve a side-lobe attenuation
of 60 dB. The decay times T (θq, φq) were estimated from the respective DEDCs using the full-rank ADVI
algorithm implemented in the Python package pymc3 [22]. To ensure computational feasibility of the parameter
inference, all decay curves were downsampled to time steps of approximately 10 ms after Schroeder integration.
While a first order model was assumed for the estimation of the directional decay times, a second order model
was chosen for the estimation of decay times from the omnidirectional EDC. An assumption that is justified
based on Bayesian evidence [15] and is in line with findings by Balint et al. [6]. In order to minimize local
fluctuations in the decay process, the omnidirectional EDC was calculated by averaging the EDCs of all 310
microphone positions without any array processing applied.

4 Results

Figure 2 shows the omni-directional EDC for the third-octave bands 400 Hz (left) and 500 Hz (right), averaged
over all 310 receiver positions. In both cases a double-sloped decay is present, therefore a multi-exponential
decay model is applied to calculate the initial decay time T1 and late decay time T2. The Bayesian approach
described in Section 2 is used to estimate the decay distribution as shown in Fig. 3. For the single value T1
corresponding to the initial decay time, the mean value of the first distribution is calculated, for the late decay
time it is done accordingly with the second distribution. For both frequency bands the initial decay time
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Figure 2: Measured omni-directional EDC, inital decay time T1 and late decay time T2.
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Figure 3: Decay time distribution for 400 Hz estimated with the Bayesian approach.

Table 1: Decay paramters T1, T2, T20, and T30 for 400 Hz and 500 Hz.

T1 T2 T20 T30

400 Hz 2.92 s 5.32 s 3.36 s 3.60 s

500 Hz 2.92 s 4.60 s 3.31 s 3.56 s

corresponds to T1 = 2.92 s. The late decay times correspond to T2 = 5.32 s and T2 = 4.6 s for the 400 Hz
and for 500 Hz bands, respectively. The clear double-sloped nature of the decay results from (a) the separation
of the sound field due to non-uniform distribution of absorption in the reverberation room (grazing and non-
grazing sound field in vertical and horizontal planes) and (b) the varying decay times within the frequency
bands (grazing modes will exhibit a longer decay time as well as axial and tangential modes compared to
oblique modes). The bending point of the decay curves are located between −20 dB and −30 dB, consequently
applying linear regression in compliance with ISO 354 to calculate well-known reverberation parameter T20 or
T30 lead to results which lie between the early and late decay values as shown in Table 1.
The directional energy distribution at 400 Hz for the steady-state condition and the time instances where the

omni-directional EDC reaches −5 dB, −25 dB, and −35 dB are shown in Fig. 5, normalized by their mean value
(the colors indicate the deviation from the mean). The plot is aligned with the coordinate system of the room in
Fig. 1, hence the x-axis is indicated at 0◦ and 180◦ and the y-axis at - 90◦ and 90◦ in the azimuth direction. In
the steady-state condition the energy is mainly concentrated in the upper hemisphere due to the high absorption
on the ground, where the absorber is placed. The distinct maxima found in steady-state initially decrease,
indicating an increased mixing of the sound field, which is in agreement with findings from a previous study
where the authors found an initial increase in estimated isotropy during the initial decay process [8]. At the time
instance where decay levels are at - 25 dB and - 35 dB a de-mixing of the sound field occurs and the energy is
concentrated in the horizontal plane of the reverberation room. Eventually, at t−35dB, distinct energy peaks are
visible at 0◦ and 180◦, indicating the presence of axial room modes in the x-direction.
Regions with higher energy levels during the decay process (cf. Fig. 4) correspond to the longer decay times

shown in Fig. 5, where the directional decay times for the third-octave frequency bands of 400 Hz and 500 Hz
are plotted. At 400 Hz a decay time up to 5.5 s is visible at 0◦ and 180◦, indicating an axial mode in the x-
direction. This is in line with the late decay time T2 estimated from the omni-directional EDC. For the case of
500 Hz a longer decay time of 4.5 s is visible at 90◦, indicating the presence of an axial mode in the y-direction,
which again matches the late omni-directional decay time T2. The shortest decay times which are located in the
lower hemisphere in Fig. 5 should correspond to the the initial decay times estimated in Tab. 1, but are slightly
overestimated (approximately 3.3 s instead of 2.9 s). Due to the room shape and absorber location a symmetry
between upper and lower hemisphere is expected. This tendency is more distinct in the 400 Hz band than in the
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Figure 4: Directional energy decay curves normalized by their mean over all directions. The time instances
correspond to the steady-state and omni-directional energy decays of −5 dB, −25 dB, and −35 dB.
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Figure 5: Directional decay times for the third-octave bands 400 Hz (left) and 500 Hz (right)
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Figure 6: DEDCs at 500 Hz for 200 directions (–), for (90◦, 0◦) (–), and for (0◦, 90◦) (−·).

500 Hz band. However, for both bands, an overestimation of decay times is evident in the upper hemisphere,
compared to the lower hemisphere. Reasons for the overestimation are discussed in the following paragraph.
In Fig. 6, the directional energy decay curves are shown for 200 directions. For the sake of illustration curves
are highlighted for two directions: (90◦, 0◦) and (0◦, 90◦). Interestingly the DEDC for (90◦,0◦) clearly
shows a multi-exponential behavior, although a single-exponential decay was expected if looking only into
a certain direction. When estimating decay times one would have to use a multi-exponential model for a better
representation of the data. However, applying a second order model resulted in inconclusive results, indicating
an overfitting due to a mismatch between model and measured data. One reason for the presence of multi-
exponential decays after sound field decomposition could be a non-ideal separation of the mode groups due
to insufficient side-lobe attenuation and angular resoluton of the beamforming algorithm. The DEDC for (0◦,
90◦), which corresponds to a slowly decaying axial mode in the y-axis, exhibits a fairly straight decay. Hence,
the decay time is in agreement with the late decay T2 = 4.6 s, estimated with the Bayesian approach from the
omni-directional EDC. In this case a first order model gives a good estimate for the decay time.

5 Conclusion

We presented an analysis of the directional energy decay process in a reverberation room with an absorbing
sample placed on the floor. The presented method is based on the Schroeder integration of the plane wave
decomposition of the sound field. Measurements were conducted without panel diffusers mounted in the
room, giving rise to separate mode groups with direction of propagation parallel to the absorber and at oblique
incidence, hence constituting a well comprehensible setup. Results indicate a non-isotropic sound field decay
as well as a non-uniform angular distribution of decay times. Directions of dominating modes with long decay
times could be identified parallel to the absorber. We further analysed the omni-directional EDC averaged over
all receiver positions, showing that a multi-exponential decay model is needed to represent the decay process
with an initial and late decay. The late decay time inferred from the omni-directional EDC was linked to the
directions of axial modes when compared to the directional decay times inferred from the DEDC. A similar
relationship was not fully established for the initial decay time estimated from the omni-dictional EDC, due to
an overestimation of directional decay times. This mismatch primarily arises due to the insufficient side-lobe
attenuation of the beamforming algorithm and therefore the non-ideal separation of the mode groups. A model
including the beamformer directivity is required for future work. Nevertheless, it is expected that the presented
method leads to an improved understanding of the directional properties of the sound field and its decay process
– namely the lack of isotropy and the non-uniform damping of modes – and their effect on the measurement of
the random incidence absorption coefficient.
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