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Abstract
In this work, vibrations of complex structures excited by an impact source are modelled using the time domain
nodal discontinuous Galerkin (DG) method, which solves linear elasticity equations. Two structures of interest,
a T-shaped structure and a scaled lightweight wooden floor (LWF), are taken as example cases. Both structures
consist of components that differ in their mechanical properties. Rankine-Hugoniot jump conditions for piece-
wise constant material properties are used to obtain accurate numerical fluxes in the DG method. Free or fixed
boundary conditions are imposed on the surfaces of the structures. Furthermore, constant viscous damping
forces are added to the model to create vibrational energy losses of the structure. To validate the numerical
results, the mobility of the structures is calculated and compared with experimental data. The agreement is
good regarding the natural frequencies, with a maximum difference of less than 4 % for the T-shaped structure
in the range below 500 Hz, and 6.4 % for the scaled LWF in the range below 300 Hz. The adopted damping
approach is shown to be insufficient to represent a broad frequency range.

Keywords: discontinuous Galerkin, vibration, linear elasticity, wooden structures.

1 Introduction

Due to the increasing focus on sustainability issues with conventional concrete-based construction methods,
wood-based building methods have steadily gained more ground. However, these wooden building methods
suffer from poor sound insulation in the low-frequency range due to the low weight of building components.
Structural motions induced by human activity or mechanical systems can excite vibrations in structures. These
vibrations transmit through the building elements and subsequently radiate low-frequency noise that causes
disturbance to the occupants of the building.

Two common structures found in wooden-based buildings are T-shaped structures or lightweight wooden
floors (LWF). To limit the noise and vibration levels transmitted through such structures, it is important to
accurately predict the level of vibration in the structures. One of the vibration models of the T-shaped structure
was developed in Ref. [14] using the plate theory, considering both out-of-plane and in-plane vibrations.
Some models have been developed to predict the LWF vibration field utilising Kirchhoff plate and Euler beam
vibration theories. These models were solved using the modal expansion method, as shown in Ref. [2]. A
recent review [5] showed that the LWF vibration model can be refined using the more general plate and beam
vibration models, such as Mindlin plate and Timoshenko beam theories. The analytical solutions of these
methods, however, are only possible for specific geometries, boundary conditions, and homogeneity of material
properties. To determine the transmission of vibration through complex systems, energy-based methods or
wave-based methods are commonly used. [3, 4].

The energy-based methods include statistical energy analysis (SEA), which is mainly used at high
frequencies where the vibration modal density is high. This method has been applied successfully to analyse
vibration transmission of coupled masonry and concrete walls [7]. These approaches are often preferable
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since they provide a quick solution or when the detailed information on the structure is not demanded, e.g.,
octave band analysis. However, energy-based methods fail in the low-frequency region, which is important for
vibration problems in building acoustics applications. Measurement results have shown that the impact sound
levels of an LWF structure are dominant below 100 Hz [9].

Wave-based methods are numerical methods that solve the governing equations that describe structural
vibration, and this category is usually used for the low-frequency range. There are several wave-based
numerical methods used to predict the vibration field of building elements, such as the finite element method
(FEM) [8], the finite difference time domain (FDTD) method [13], the spectral finite element method (SFEM)
[12], and the discontinuous Galerkin (DG) method [16]. Among these methods, the DG method is a relatively
new method adapted to the vibration problem. This method has certain advantages compared to the other
wave-based methods. For example, it can represent the problem domain using unstructured mesh elements
to easily deal with a complex domain, and it allows refinement of the solution by increasing the polynomial
order or element number. Another advantage is that the DG method solves the governing equations using
an element-wise formulation. Therefore, it provides a framework well suited for parallel computation. This
allows for significantly accelerated calculations [11]. This method has been extensively studied for application
in another area of applied physics as seismology [19]. However, its application to structural vibration is still in
its infancy. So far, the DG method has been applied to a forced vibration problem of a concrete slab and an
L-shaped structure [16]. However, this application was limited to homogeneous material properties.

In this work, the time domain nodal DG method is applied to the vibration of the T-shaped and LWF
structures that have components with different material properties. This study aims to apply the nodal DG
method to the vibration problem of solid structures with piece-wise constant material properties. The proposed
model is based on a 3-D solid domain, while other methods usually propose vibration models in reduced
dimensions such as beams and plates [5]. Mobilities of the structures are determined using DG and compared
with experimental results. The paper is organised as follows. Section 2 describes the computation methodology
of the nodal DG method. Section 3 shows the details of the case studies along with their excitation and
receivers locations. The measurement set-up for validating the result is shown in section 4. Section 5 shows
and discusses the numerical simulation and measurement results, and section 6 concludes the paper.

2 Computational Methodology

2.1. Linear elasticity equations
The linear vibration of a structure can be modelled using the linear elasticity equations, which governs the
propagation of elastic waves in a solid medium. This set of equations consists of the mass conservation, the
momentum conservation, and Hooke’s constitutive equations [10]. For a Cartesian 3-D coordinate system,
the equations for an isotropic medium can be written as a set of linear first-order hyperbolic equations in a
velocity-stress form as:

∂q
∂t
+ ∇ · F(q) =

∂q
∂t
+ A j

∂q
∂x j
= g − ζq, (1)

q(x, t) =
[

u v w σxx σyy σzz σxz σyz σxy

]T
,

g(x, t) =
[

gx gy gz 0 0 0 0 0 0
]T
,

ζ = diag
(
ζx ζy ζz 0 0 0 0 0 0

)
,

where u, v,w are the velocities in the x-, y-, and z- directions, respectively. σxx, σyy, σzz, σxz, σyz, σxy are
the normal and shear stress components, gx, gy, gz are the body forces, and ζx, ζy, ζz are the viscous damping
forces. The flux matrix reads F(q) = [ f x, f y, f z] = [Axq,Ayq,Azq]. The constant flux Jacobian matrix A j is
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given as:

A j =

 03×3 A1, j

A2, j 06×6

 ,A1, j = −
1
ρ


δx j 0 0 δz j 0 δy j

0 δy j 0 0 δz j δx j

0 0 δz j δx j δy j 0

 , (2)

A2, j = −



(λ + 2µ)δx j λδy j λδz j

λδx j (λ + 2µ)δy j λδz j

λδx j λδy j (λ + 2µ)δz j

µδz j 0 µδx j

0 µδz j µδy j

µδy j µδx j 0


, (3)

where λ and µ are the Lamé parameters, ρ is the mass density and index j has components [x, y, z]. The δi j

denotes the Kronecker delta function. The solution of Equation 1 consists of a linear combination of elastic
waves propagating with longitudinal wave speed (cp =

√
(λ + 2µ)/ρ) and transverse wave speed (cs =

√
µ/ρ).

The Lame parameters are represented by using Young’s modulus (E) and Poisson’s ratio (ν) as λ = Eν/(1 +
ν)(1 − 2ν) and µ = E/2(1 + ν).

2.2. Nodal discontinuous Galerkin method
The nodal discontinuous Galerkin (DG) method is used to solve Equation 1, and the algorithm of the nodal
DG method developed by Hesthaven and Warburton [6] is adopted. The problem domain is approximated
by the computational domain Ωh with K number of non-overlapping rectilinear tetrahedral elements Dk as
Ωh = ∪

K
k=1Dk. On each Dk, the local solution is expanded by a combination of nodal basis functions as:

qk
h(x, t) =

Np∑
i=1

qk
h(xk

i , t)l
k
i (x), (4)

where qk
h(xk

i , t) are the unknown nodal values, lki (x) are the 3-D Lagrange interpolation polynomials based on
the nodal points xi, and Np is the number of nodal points. The global solution is approximated as the direct sum
of the local solutions as q(x, t) ≈ qh(x, t) = ⊕K

k=1qk
h(x, t). The closed expression of the Lagrange interpolation

polynomials in tetrahedral elements is constructed by the products of the Jacobi polynomials of order N, and
the distribution of nodal points follows the optimised Legendre-Gauss-Lobato (LGL) points over a tetrahedral
element as presented in Ref.[6]. The number of nodal points per element is Np = (N + 1)(N + 2)(N + 3)/6. In
each element, the nodal basis functions are used to approximate the unknown variables and the body forces in
Equation 1. Then the residuals of the approximations are multiplied by the test functions following the Galerkin
method. By performing spatial integration by parts twice, the strong formulation of Equation 1 becomes the
following form: ∫

Dk

∂qk
h

∂t
+ ∇ · F(qk

h)
 lki dx =

∫
Dk

(gk
h − ζq

k
h)lki dx −

∫
∂Dk

n ·
[
F∗ − F(qk

h)
]

lidx, (5)

where ∂Dk is the element surface, gk
h is the approximated body force vector, and n = [nx, ny, nz] is the

outward normal vector of the element surface ∂Dk. The flux along the normal direction of the element surface
is defined as n · F = (nx f x + ny f y + nz f z), and the F∗ is the numerical flux.

In the DG method, the numerical flux ensures continuity of the global solution. It is a function of the interior
solution (q−h ), which is the solution within the element Dk, and the exterior solution (q+h ), which is the solution
of the neighbouring elements around Dk. In this work, the upwind numerical flux is chosen as the numerical
flux. The upwind numerical flux can be derived by solving the Riemann problem at the interface between two
homogeneous media. This interface represents the faces of two neighbouring elements located at the same
position. Consider that the interface is located at x = 0. The properties of the medium (λ−, µ−, ρ−) are those of
the internal medium at x < 0, and (λ+, µ+, ρ+) are those of the adjacent one at x > 0. The Riemann problem is
a discontinuous initial value problem that happens at this interface as:

qh(x, 0) =

q−h if x < 0,
q+h if x > 0.
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The solution to this problem, the intermediate solution (q∗h(0, t)), is derived using the Rankine-Hugoniot
jump condition as described in Refs. [16],[19],[10].The numerical fluxes n ·F∗ = n ·F(q∗h) are a function of the
intermediate solution. After defining the numerical flux, the nodal basis and numerical flux are substituted into
Equation 5 to obtain the semi-discrete form for each element as:

Mk ∂u
k
h

∂t
−

1
ρ

(
Sk

xσxx
k
h + Sk

yσxy
k
h + Sk

zσxz
k
h

)
=Mk

(
gx

k
h − ζxuk

h

)
−

4∑
r=1

MkrF̂kr
u ,

Mk ∂v
k
h

∂t
−

1
ρ

(
Sk

xσxy
k
h + Sk

yσyy
k
h + Sk

zσyz
k
h

)
=Mk

(
gy

k
h − ζyvk

h

)
−

4∑
r=1

MkrF̂kr
v ,

Mk ∂w
k
h

∂t
−

1
ρ

(
Sk

xσxz
k
h + Sk

yσyz
k
h + Sk

zσzz
k
h

)
=Mk

(
gz

k
h − ζzw

k
h

)
−

4∑
r=1

MkrF̂kr
w ,

Mk ∂σxx
k
h

∂t
− (λ + 2µ)Sk

xuk
h − λS

k
yvk

h − λS
k
zwk

h = −

4∑
r=1

MkrF̂kr
σxx
,

Mk ∂σyy
k
h

∂t
− λSk

xuk
h − (λ + 2µ)Sk

yvk
h − λS

k
zwk

h = −

4∑
r=1

MkrF̂kr
σyy
, (6)

Mk ∂σzz
k
h

∂t
− λSk

xuk
h − λS

k
yvk

h − (λ + 2µ)Sk
zwk

h = −

4∑
r=1

MkrF̂kr
σzz
,

Mk ∂σxz
k
h

∂t
− µSk

zuk
h − µS

k
xwk

h = −

4∑
r=1

MkrF̂kr
σxz
,

Mk ∂σyz
k
h

∂t
− µSk

zvk
h − µS

k
ywk

h = −

4∑
r=1

MkrF̂kr
σyz
,

Mk ∂σxy
k
h

∂t
− µSk

yuk
h − µS

k
xvk

h = −

4∑
r=1

MkrF̂kr
σxy
.

The uk
h, vk

h, wk
h, σxx

k
h, σyy

k
h, σzz

k
h, σxz

k
h,σyz

k
h, and σxy

k
h are vectors representing all unknown variables at

the nodal points xi, with i = 1 to Np. Note that all the mechanical properties in Equation 6 are defined in the
interior element, except for the numerical flux terms. The second superscript r denotes the rth faces of ∂Dkr of
the element Dk, where the number of faces of the tetrahedral element is four. The terms F̂kr

u , F̂kr
v , F̂kr

w , F̂kr
σxx

, F̂kr
σyy

,

F̂kr
σzz

, F̂kr
σxz

, F̂kr
σyz

, and F̂kr
σxy

are the flux terms associated with the term n ·
[
F∗ − F(qk

h)
]

over the element surface
in the strong form (Equation 5). Mk is the element mass matrix, Sk

j are the element stiffness matrices in the
j-directions, and Mkr are the element face matrices. More details on these matrices are given in Refs. [6, 18].
Having the semi-discrete form at hand, Equation 6 for the whole computational domain can be expressed in the
form of ordinary differential equations as:

dqh

dt
= L (qh(t), t) , (7)

where qh is the vector of all nodal solutions and L is the semi-discrete operator conducted over all elements.
Finally, various methods can be used to integrate the time derivative in Equation 7. In this work, the fourth-
order Runge-Kutta method with eight stages (RKF84) is used, which is described in Ref. [17]. The time-step
(∆t) for the time integration is defined as:

∆t =
CCFL ·min(rDk )

N2 ·max(cp)
(8)

where CCFL is the Courant number, max(cp) is the maximum longitudinal wave speed in the domain and
min(rDk ) is the shortest element edge in the computational domain. The methodology on applying the force
excitation and the boundary conditions can be found in Ref.[16].
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3 Case studies

3.1. T-shaped structure

Figure 1: The case of the T-shaped structure that a fixed boundary condition is applied at the black coloured
area. The red and blue dots denote the excitation and receiver locations, respectively.

As illustrated in Figure 1, the T-shaped structure is a simple structure consisting of two components with
different mechanical properties, a vertical beam and a horizontal beam with dimensions [14 cm × 108 cm ×
2.2 cm] and [2.2 cm × 108 cm × 7 cm], respectively. Its upper corner is at the origin of the coordinate system.
The two components are glued to have a fixed connection at the interface on z = -2.2 [cm] surface, and the
mechanical properties of the components are given in Table 1. Please note that the damping forces are the same
in all directions ζx = ζy = ζz = ζ and are assumed the same for both components.

Table 1: The mechanical properties of the constituting components of the T-shaped structure.

Component Density
[kg/m3]

Young’s
Modulus
[GPa]

Poisson’s
Ratio [-]

Damping
force(ζ)
[N ·m3/kg]

Vertical beam 616.1 2.39 0.3 10
Horizontal beam 720.8 3.57 0.3 10

A fixed BC is applied to the black coloured area shown in Figure 1, while remaining surfaces of the structure
have free BCs. To excite the vibration, a point force (F) is applied at the coordinates (13, 101.25, 0) cm, marked
with a red dot in Figure 1. To obtain the response of the structure, four receivers (R1-R4) are selected to record
the velocities of the structure, as shown with blue dots in Figure 1. The receivers are selected in this manner
since they are distributed at a different distance from the force location. The coordinates of the receivers are as
follows R1=(1, 13.5, 0) cm, R2=(13, 54, 0) cm, R3=(7, 94.5, 0) cm, R4=(8.1, 94.5, -8.2) cm.

3.2. Scaled lightweight wooden floor
The scaled lightweight wooden floor (LWF) consists of a single panel as the top plate and seven joists to
reinforce the plate, as shown in Figure 2. This case represents a more complex structure with many components
and different mechanical properties as shown in Table 2. The top plate has dimensions [112 cm x 112 cm x 0.9
cm], and each joist has dimensions [108 cm x 2.2 cm x 7 cm]. The origin of the coordinate system is at the top
corner of the plate, as shown in Figure 2. The joists are placed with an equal distance of 13.75 cm, with Joist 1
closest to the origin. The connections between the top floor and joists are fixed and all surfaces of the structure
have the free BCs.
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Table 2: Mechanical properties of the individual components of the scaled LWF structure.

Component Density
[kg/m3]

Young’s
Modulus
[GPa]

Poisson’s
Ratio [-]

Damping
force(ζ)
[N ·m3/kg]

Plate 670 3.70 0.3 20
Joist 1 583 1.89 0.3 20
Joist 2 565 2.06 0.3 20
Joist 3 559 2.07 0.3 20
Joist 4 571 2.14 0.3 20
Joist 5 577 2.16 0.3 20
Joist 6 589 2.39 0.3 20
Joist 7 577 2.10 0.3 20

112

112

7

2,2

0,9

13,75 

(0,0,0)

Z

Y
x

Joist 1

Joist 7

Figure 2: The scaled LWF structure, all dimensions are in centimetres.

The vibration behaviour of the scaled LWF structure under centre point excitation (F) is investigated. Four
receivers C1-C4 were selected to observe the impact responses in this configuration. The coordinates of the
force and receivers are as follows F=(56, 56, 0) cm, C1=(62.875, 42.25, 0) cm, C2 = (76.625, 28.5, 0), C3 =
(83.5, 28.5, 0) cm, C4 = (97.25, 14.75, 0) cm.

4 Experimental Validation

4.1. Measurement set-up
The forced vibration experiments of the case studies presented in Section 3 are described here. The T-shaped
structure is made of vertical and horizontal beams. These beams were glued to have a fixed connection. The
vertical beam of the T-shaped structure was fixed by a steel clamp installed on a concrete slab as shown in
Figure 3a. In the case of the scaled LWF structure, the structure was made of a top plate with seven joists.
Each joist was attached to the bottom of the plate using nine screws that were spaced equally along the joists
axial direction. By having closely adjacent screws, the joists were assumed to have a fixed connection to the
top plate. In this study, the scaled-LWF structure was designed to have free BCs. To realise these BCs, several
metal hooks were installed on the edge of the first and the last joist. Afterward, four rubber ropes connected
these hooks to a crane machine to elevate the structure, as shown in Figure 3b. In both experimental cases, the
acceleration signals were picked up by nine single-axis accelerometers (PCB 333B30). The force excitation
was given by using an impact hammer (BK 8202) with a plastic tip. Also, National-Instruments acquisition
systems (NI 9234 and cDAQ-9178) were used to capture the signals. All signals were captured for the duration
of 7 s with a sampling frequency of 51.2 kHz.
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(a)

(b)

Figure 3: Measurement setup of (a) the T-shaped structure and (b) the scaled LWF structure.

4.2. Vibration data processing
In each case, the time-domain vibration signals were obtained from the measurements and the numerical
computations. Subsequently, the signals were converted into frequency-domain data using the fast Fourier
transform. In the frequency domain, the transfer function between velocity and force, i.e., mobility (Yi j), was
calculated to represent vibration responses of the individual case studies. The indices i, j refer to the velocity
in the i-direction due to the force in the j-direction, and defined as:

Yi j( f ) =
vi( f )
F j( f )

. (9)

In this study, two transfer mobilities are considered, Yzz( f ) and Yxz( f ). The velocity in the i-direction (vi( f ))
can be derived from the acceleration signals (ai( f )) obtained by the accelerometer using the relation vi( f ) =
ai( f )/ j2π f . To obtain the transfer mobilities from the experiment, the H1 estimator was used as shown in
Ref.[15]. This estimator is used to reduce the influence of the noise on the measurements.

5 Results and Discussions

The results presented in this section use the following computational settings. The weighting coefficient (C = 1)
is given, as shown in Equation 8. Lagrange polynomial functions of order (N = 3) is used, and an impact
excitation on both structures is given by the external body force gz(t) in terms of the Ricker wavelet as: gz(t) =(
0.5 − (π fc(t − td))2

)
e(π fc(t−td))2

, with the centre frequency of fc = 250 Hz and the centre time of td = 7 ms.

5.1. T-shaped structure

10 100 200 300 400 500

Frequency [Hz]

10
-6

10
-4

10
-2

10
0

DG K = 1063

DG K = 2126

DG K = 4089

FEM

Figure 4: The mobilities at R2 position of the fixed BC configuration for different element numbers.
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The nodal DG solution for the current configuration is shown in Figure 4. In this figure, three mobility curves
Yzz are shown at location R2. Each curve was obtained from the nodal DG model with a different number of
elements, K = 1063, 2126, and 4089. The Table 3 lists all natural frequencies for each number of elements. It
should be noted that the slowest wave in the T-shaped structure, the transverse wave, has a velocity of 1221.5
m/s. This means that the minimum wavelength at 500 Hz is about 2.4 m, and the structure seems oversampled
by the discretisation. However, since the structure has a small thickness which is 2.2 cm, the discretisation
should maintain a limited skewness of the tetrahedral element to have a good numerical result. Moreover, the
changes of the natural frequencies between all different element number are less than 2 Hz and is assumed the
results have converged. The DG results of K = 4089 is compared with the measurement results. In addition,
the same case is simulated with FEM using COMSOL Multiphysics 5.6 [1] in frequency domain by solving
the linear elasticity equations. The comparison with the FEM solution shows that the nodal DG approach has
a maximum difference of 15 Hz at the highest natural frequency. This is caused by the discontinuity of BCs at
y = 0 cm and z = -2.2 cm. In the FEM, the solution is continuous at the edges of the elements, but the nodal
DG solution can have two solutions at the same position due to its discontinuous elements.

10 100 200 300 400 500

Frequency [Hz]

10
-6

10
-4

10
-2

10
0

DG Measurement

(a)

10 100 200 300 400 500

Frequency [Hz]

10
-6

10
-4

10
-2

10
0

DG Measurement

(b)

10 100 200 300 400 500

Frequency [Hz]

10
-6

10
-4

10
-2

10
0

DG Measurement

(c)

10 100 200 300 400 500

Frequency [Hz]

10
-6

10
-4

10
-2

10
0

DG Measurement

(d)

Figure 5: Mobilities of the T-shaped structure obtained by the nodal DG method and the measurements at the
positions (a) R1, (b) R2, (c) R3, and (d) R4.

The mobilities at receivers R1-R4 are shown in Figures 5. It can be seen that the mobilities obtained from
the nodal DG method closely match those obtained from the measurement. Table 3 lists all the discrepancies
of the natural frequencies, with the sixth natural frequency having a maximum absolute frequency difference
|∆ fn| = 16.3 Hz from the measured value, which is 3.8% deviation. The other natural frequencies have smaller
absolute differences. It is assumed that these differences are due to the isotropic assumption of the vertical
and horizontal beams in the nodal DG model, since it is known that the MDF material has a slight orthotropic
property. The magnitude discrepancies are caused by inadequacy of internal damping properties. The given
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constant viscous damping cannot capture the frequency-dependent damping properties of the structure. From
Figure 5, it can be seen that the magnitude of mobilities obtained by the nodal DG method and the measurements
is of the same order for the frequencies below 150 Hz. However, the attenuation increases more rapidly with
frequency, in the experimental results than in the computational results. In Figure 5d, the mobility in the x-
direction at position R4 is shown. This mobility has the same magnitude as the mobility in the z-direction at
the other positions (R1-R3) due to the body force in the z-direction.

Table 3: Natural frequencies at the T-shaped structure obtained from the nodal DG method and measurements
at position R2.

Index
Natural frequency [Hz] |∆ fn|

K = 1063 K = 2126 K = 4089 Measurement [Hz] [%]

1 21.0 20.0 20.0 19.3 0.7 3.6
2 86.0 87.0 87.0 89.0 2.0 2.2
3 127.0 126.0 126.0 128.6 2.6 2.0
4 263.0 264.0 264.0 269.9 5.9 2.2
5 328.0 327.0 328.0 330.6 2.6 <1.0
6 415.0 416.0 416.0 432.3 16.3 3.8
7 475.0 476.0 477.0 475.7 2.7 <1.0

5.2. Scaled lightweight wooden floor
Three mobility curves Yzz at position C1 excited by the force at the centre position are displayed in Figure
6. It should be noted that the thickness of the plate structure is 0.9 cm,and to maintain a good skewness of
the element, a sufficient number of elements is needed (average skewness for K = 6918 is 0.33). The average
skewness of the element is expected to be more than 0.3 to have a good tetrahedral element. In this case, the
solution from K = 13685 is taken as the comparison to the measurement results. All natural frequencies below
300 Hz are tabulated in Table 4.

10 20 50 100 200 300 500

Frequency [Hz]

10
-6

10
-4

10
-2

10
0

K = 6918 K = 13685 K = 21094

Figure 6: Numerical solutions of the scaled LWF at position C1 for different element numbers.
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Figure 7: Mobilities of the scaled LWF structure obtained by the nodal DG method and the measurements at
the positions (a) C1, (b) C2, (c) C3, and (b) C4.

Figure 7 shows the mobilities at positions C1-C4. As mentioned in Section 2, these points are gradually
further away from the excitation point. All mobilities obtained by the nodal DG method agree well with the
measurement results, especially in the frequency range 20-250 Hz. Outside this range, the discrepancy of the
measurement results and the simulation results increases. Similar to the previous case, the constant damping is
a reason for this, where the model does not capture the frequency-dependent damping of the structure. It can
be seen that the first natural frequency at 15 Hz is heavily damped in DG and the applied constant damping
is too high for this mode. In contrast, above 250 Hz the damping from the experimental results becomes
higher and the location of the natural frequencies is no longer discernible. Another source of discrepancy is
the connection between plate and joists. These components are connected by nails without glue, and modelling
these connections as fixed connections along the contact interface can lead to inaccuracies.

Table 4: Natural frequencies at the scaled LWF structure obtained from the nodal DG method and
measurements at position C1.

Index
Natural Frequency [Hz] |∆ fn|

K = 6918 K = 13685 K = 21094 Measurement [Hz] [%]

1 15.0 15.0 15.0 14.1 0.9 6.4
2 73.0 74.0 74.0 70.1 3.9 5.6
3 149.0 149.0 149.0 148.9 0.1 <1.0
4 167.0 168.0 168.0 159.6 8.4 5.3
5 193.0 193.0 193.0 190.9 2.1 1.1
6 270.0 271.0 272.0 260.9 10.1 3.9
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6 Conclusions

In this study, the nodal DG method is applied to model the vibration of a T-shaped structure and a scaled
lightweight wooden floor. These structures are made of several components that have different material
properties resulting in constant piece-wise material properties in the computational domain. The numerical
fluxes in the materials with the piece-wise constant properties in the computational domain are derived by
the Rankine-Hugoniot jump condition. To validate the numerical results, the mobility of the structures is
calculated and compared with results from an experimental study. The agreement is good regarding the
natural frequencies, with a maximum difference of less than 4 % for the T-shaped structure in the range below
500 Hz, and 6.4 % for the scaled LWF structure in the range below 300 Hz. In comparison, the adopted
damping approach is insufficient to represent a broad frequency range. In future work, incorporating the
frequency-dependent damping into nodal DG model is important. Moreover, the extension into anisotropic
properties of the model could be essential especially for wooden based structures.
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