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Abstract
Diffraction at the edges of finite absorber samples causes constructive as well as destructive interference and
results in a sound field above the surface which deviates from the case of the infinitely extended material layer.
This problem is referred to in the literature as finite sample effect or edge effect and is of importance in the
context of free-field and in situ methods which attempt to derive material parameters from measurements of
the total sound field (the so-called inverse wave field methods). The oscillations of the sound pressure around
the reference curves are more pronounced the smaller the absorber sample. However, the exact values cannot
be calculated in a simple way due to the complexity of the problem and the large number of influencing factors
(material properties and geometry, position of source and receivers, frequency). This contribution presents
preliminary work on the precise modeling of the edge effect based on supervised machine learning. In the
context of this work it is discussed how FEM simulations have to be set up in principle in order to emulate the
measurement of sound pressure over small absorbers in the semianechoic chamber as accurately as possible.
Furthermore, it is shown how such simulations can be systematically varied in all relevant parameters to
generate training data for artificial neural networks and how the network design and the actual training process
are carried out.

Keywords: artifical neural networks, machine learning, sound field modeling, finite sample effect, porous
materials

1 Introduction

Free-field and in-situ methods that attempt to derive the absorption coefficient, surface impedance or
structural parameters of acoustic materials from sound field measurements above the absorber are the so-called
acoustic field methods [1] or wave field analysis methods [2]. Within this category various approaches differ
with respect to the physical quantities to be measured (sound pressure and/or particle velocity), certain basic
assumptions about the wave field (plane wave or spherical wave hypothesis), the overall complexity of the
measurement setup as well as the applied procedures for inversion of the underlying sound field model (simple
calculation or complex iterative algorithms). However, a fundamental issue arises from the fact that practically
all approaches are based on models of infinitely extended material layers or impedance planes and therefore
diffraction occurring at the edges of finite absorber samples is not taken into account. The resulting constructive
and destructive interferences lead to deviations from the reference sound field, which are more pronounced
the smaller the sample under investigation [3, 4, 5]. This problem manifests itself in oscillations of the actual
values of the sound field over the finite absorber around the reference curves for infinite material expansion.
This discrepancy results in corresponding errors in the inverse determination of material parameters. Most
attempts to address this issue are aimed at reducing or avoiding the influence of edge diffraction at the finite
sample as well as possible, for example by clever positioning of the sensors or adjusting the height of the sound
source [3, 4]. While these efforts only try to minimize the discrepancy between the actual measured values
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and the models used, the aim of the approach presented here is to develop a universally applicable model
for calculating the actual sound field, taking into account the edge effect, through training of multi-layered
feed forward neural networks. Since there is no simple mathematical formulation for the sound field caused
by a spherical wave over a finite absorber, specific cases are usually solved with numerical computational
tools in forward simulations, i.e. the Boundary Element Method (BEM) or Finite Element Method (FEM).
These calculations are in principle solutions of the Helmholtz equation taking into account various boundary
conditions and parameters. Given that the universal approximation theorem states that already a network with
only one hidden layer can approximate any continuous function [6, 7] provided that the network has enough
hidden neurons and suitable activation functions, the results of numerical simulations are very well suited as
training data for neural networks for generalized prediction of the sound field. The edge effect to be learned
is formed as the sound pressure difference between the FEM simulations of finite absorber samples and an
analytical model of infinite material extension. The systematically varied geometric and acoustically relevant
model parameters serve as input features for the machine-learning model.

2 Method

In this section, the models and calculations used to determine the sound field contribution caused by the
edge effect are introduced and the generation of training data based on them is described.Subsequently, the
methodology of the design and training of the neural networks is discussed.

2.1. Theoretical model for the sound field above an infinite porous layer
The analytical model used in this work to calculate the sound field caused by a monopole source over a

laterally infinite planar material surface is that of Allard et al. [8]. It predicts the velocity potential above
a layer of porous material backed by an impervious surface using the two parameters ν2
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where Rinc = ‖~rs − ~rrec‖ is the distance between a source at ~rs and a receiver at ~rrec and Rre f l = ‖~ris − ~rrec‖ is
the distance between an image source at ~ris and the receiver. J0(x) represents the Bessel function of the first
kind of order zero, r the horizontal distance between source and receiver and l the thickness of the material
layer. Instead of a surface impedance value, the result only depends on the complex material parameters ρm

and km, which are the effective density and wave number respectively. Therefore, no implicit assumptions are
made about the material behavior and the model can effectively be used to calculate the sound field above a
non-locally reacting material. The sound pressure ptot
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)
can then be evaluated from the equation
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2.2. Johnson-Champoux-Allard equivalent homogeneous fluid model
In the context of this work, porous materials are generally modeled as an equivalent homogeneous fluid.

All models belonging to this approach replace the complex two-phase poroelastic material by an equivalent
damped fluid which adequately reflects the effective frequency-dependent propagation and energy dissipation
in the material. Depending on the formulation, the models provide either the complex characteristic density
ρ

m
(ω) that describes the visco-inertial effects and a dynamic bulk modulus Km(ω), describing the thermal effects

within the porous medium or the combination of characteristic impedance Zm(ω) and propagation constant
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Γm(ω) of the equivalent fluid, both variants being easily convertible into each other:

Zm(ω) =
√

Kmρm
(3)

Γm(ω) = jkm = jω

√
ρ

m

Km
(4)

The well-established Johnson-Champoux-Allard model used here is one of the more complex poroacoustic
models and is capable of describing sound propagation in porous media for a wide range of materials. In 1987,
Johnson Koplik and Dashen proposed a semi-phenomenological expression of the effective density ρ

m
(ω) of a

porous material considered to have a motionless skeleton and arbitrary pore morphologies [9]:
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Later on Champoux and Allard expanded on that work and presented a model for the dynamic bulk modulus
Km(ω) for the same type of material as follows[10]:

Km(ω) =

γP0
σ

γ − (γ − 1)
(
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√
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With the flow resistance Φ, the porosity σ, the tortuosity α∞ and the viscous characteristic length Λ as well
as thermal characteristic length Λ′, a total of 5 material parameters are required for the calculation. The
constans are the viscosity of air (η ≈ 18.4 · 10−6 Pa·s), the adiabatic index or heat capacity ratio (γ = 1.4),
the standard atmospheric pressure (P0 = 101325 Pa) and the Prandtl number (NPr = 0.7179) for air under
standard conditions.

2.3. Problem Formulation: Modeling of the edge effect
As outlined in the introduction, the edge effect is understood as the sound field component caused by

diffraction at a finite rectangular sample. Accordingly, for its calculation the differences are formed from
the sound pressure values of the analytical model of Allard et al., assuming infinite material extension, and
corresponding FEM simulation results of finite samples, as described in more detail in the following. All
other parameters are the same in both calculation methods, which are also based on the identical material
modeling of the absorber as an equivalent fluid according to the Johnson-Champoux-Allard model. The
resulting complex-value difference values of the sound pressure between the analytical and numerical sound
field computation (p

Edge
= p

FEM
− p

Ana
) constitute the target values to be learned by the supervised machine

learning approach. The independent variables influencing the problem, i.e. the features of the machine learning
model, are therefore on the one hand the geoemtrical parameters length, width and thickness of the material
sample, as well as the source and receiver coordinates in space and on the other hand the 5 material parameters
governing the poroacoustic model. A schematic representation of the entire data processing is shown in Figure
1.

2.4. Generation of Training Data using FEM simulations
For the calculation of sound fields over finite absorber samples, fully coupled FEM simulations were carried

out, using the software COMSOL Multiphysics. Within the numerical model the porous material is equally
parameterized as a homogeneous fluid according to the Johnson-Champoux-Allard model. As in the previously
described analytical sound field model, which is based on a rigidly backed material layer, the ground is set to
be ideally sound-hard in the FEM model. To ensure anechoic conditions at the remaining model boundaries,
a Perfectly Matched Layer (PML) is added along the exterior. The basic structure of the FEM models is
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Figure 1: Flowchart for supervised learning of an ANN based on varied acoustic and geometric parameters as
input variables. The prediction error is minimized by adjusting the model-specific weights.

Figure 2: Exemplary sketch of a used FEM model with the dimensions of the rigidly backed absorber sample
and the Perfectly Matched Layer (PML). The front and top sides of the PML are depicted transparently.

illustrated in Figure 2. Instead of a fixed spatial discretization, an adaptive frequency-dependent meshing
was implemented. This allows the best possible reduction of the number of degrees of freedom and thus the
total required computation time, while always maintaining the required numerical accuracy using triangular
Langrangian elements of quadratic order with a maximum element size of λ/6. As shown in the left block
of the flowchart in Figure 1, the quantities affecting the result, i.e. the sound pressure value, include the
frequency, the absorber dimensions, positions of source and receiver (3 Cartesian coordinates each) and the
material parameters of the fluid model. This results in a total number of 15 parameters which are fed into
the machine learning model as features and which have to be varied adequately in order to cover the feature
space.(have to be varied in order to sufficiently cover the feature space). For this purpose, value arrays of length
N′ = 100000 (for an intended number of simulations N′) were first generated for all parameters between a
lower limit lb and an upper limit of parameter ub, with step size (ub− lb)/(N′ − 1). Subsequently, all parameter
vectors were each randomly permuted and combined into a set of N′ parameter combinations, which are fed to
the FEM model. The interval limits used for the variation of the parameters or features can be found in Table 1.
Due to the linear spacing in the output vector, the FEM simulations were based on equally distributed samples

between respective lower and upper limits of all features. However, already the first training results showed that
potential for the training of regression networks is wasted in this way, especially with respect to the parameter
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Table 1: Parameters and associated interval limits for the simulation

Feature lower bound lb upper bound ub unit

Frequency f 50 1200 Hz
Sample length and width l, w 0.2 1.0 m

sample height h 0.01 0.25 m
x- and y-coordinate receiver x,y -0.25 0.25 m

z-coordinate receiver z 0.02 0.2 m
x- and y-coordinate source xs,ys -0.25 0.25 m

z-coordinate source zs 0.3 0.8 m
Flow resistivity Φ 500 1.5E6 Pa s

m2

Porosity σ 0.005 0.995 -
Tortuosity α∞ 1 4 -

Viscous Characteristic Length Λ 5 400 µm
Thermal Characteristic Length Λ′ 5 800 µm

flow resistance. This could be seen from the fact that sound field results calculated with the trained networks
for materials with low flow resistivity were also promising, but were still significantly less accurate than those
for large values of flow resistivity. This relationship can also be easily plausibilized by sensitivity analyses on
the influence of the individual material parameters, which show that the variance of resulting sound pressure
results is large for small flow resistvities and decreases with increasing absolute value of the material parameter.
Therefore, to better sample this feature when generating training data, a second set of N′′ = 50000 simulations
was added based on a vector of logarithmically spaced points between the previously used flow resistivity
interval boundaries. Finally, the two data sets were combined into a number of N = N′ + N′′ = 150000
training data. Another combination of 30000 results of logarithmically spaced and 60000 linearly spaced flow
resistivitie vectors served as test data set. The systematic script-based parameterization and execution of the
extensive simulation series could be comfortably implemented using the LiveLink for MATLAB function of
COMSOL.

2.5. Network Design / Architecture and Learning of NN
One type of neural networks that are frequently used for function approximation are multilayer feedforward

neural networks trained with the backpropagation algorithm. This type of network consists of an input layer,
an output layer, and at least one hidden layer, each with an arbitrary number of neurons. The neurons are the
nodes of a graph and have connections (edges) to all neurons of the respective previous and subsequent layer
(with the exception of the bias nodes, which only have outgoing connections). Such layers are also called fully
connected layers and represent the standard case for neural networks. The strength of the connection between
two neurons is quantified by the edge weights, the coefficients that are optimized during training. The outputs
of a feedforward neural network for regression with two layers (the input layer is not counted) can be written
as

yk = g2

 M∑
j=1

wk j g1

 D∑
i=1

w ji xi + w(1)
j0

︸                   ︷︷                   ︸
=z j

+ w(2)
k0

 (7)

where yk is the kth output, g1 and g2 the activation functions, wi, j the edge weigth from node i to node j, xi

the ith input and w(1)
j0 and w(2)

k0 the corresponding bias weights for layer 1 and 2 respectively. The network
topology representation corresponding to the function is shown in Figure 3. In this work, networks with up to
three hidden layers are studied. Since the benefit of Rectified Linear Unit (ReLU) activations in terms of more
stable gradients during backpropagation is hardly given for shallow networks, hyperbolic tangent activations
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Figure 3: Illustration of a two-layer neural network with D inputs, M hidden neurons (each using hyperbolic
tangent activation functions), and K outputs. The bias nodes (filled in blue) have no incoming connections.

for the hidden layers were used instead in combination with linear activations for the output layer. The learning
process during training is generally considered as the iterative optimization of the network weights and biases
with respect to an appropriate cost function. In this case, the performance function used is the mean squared
error (MSE), which is defined as

MS E =
1
K

1
N

K∑
k=1

N∑
n=1

(
tn,k − yk

(
~xn, ~w

))2 (8)

with K = 2 network outputs, namely the real and imaginary parts of the sound pressure and a set of N =

150000 training data points. For the Training of the networks, the Levenberg-Marquardt algorithm was chosen.
Although it is considered to be relatively memory demanding compared to other training functions, it has the
advantage of significantly faster convergence, especially for problems of accurate function approximation by
networks with a limited number of weights. For shallow backpropagation networks, the initial weights and bias
values for a layer are computed in Matlab using the Ngyuen-Widrow method, which generates the initial values
such that the active regions of the neurons are approximately evenly distributed across the layer’s input space
[11]. While still maintaining a certain degree of randomness, the main advantage over purely random weights
and biases is a significant speedup of the training process. For the purpose of preventing the neural networks
from overfitting, the early stopping method was applied during training. This requires splitting the data set into a
training set, used to minimize the cost function (eq. 8) and a validation set, used to evaluate the current network
during training with unknown data. Therefore, this subset is not learned directly but acts as a regularization.
While the training error decreases as optimization progresses, it is possible that the validation error increases
again due to overfitting after an optimum is reached. The goal of early stopping is now to stop training as soon
as the validation error has reached its minimum, which usually results in a well-adapted network with good
generalization capabilities. Since only approximations of the gradients or the Hessian matrix are used in the
optimization, noise in the minimization process could lead to a premature termination. Therefore, a threshold
value of 10 successive increases of the validation error was defined as a termination criterion. For the final
verification and evaluation of the model with completely unknown data, a third set of data is used, the so-called
test data set.
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Figure 4: Progression of training and validation errors to the time of termination due to early-stopping.

3 Results

In the upcoming extensive studies, the best combination of number of layers and number of neurons will
be determined by extensive comparative studies. As an example and proof of concept, only the training results
and performance of a neural network with 3 hidden layers with 70, 50 and 30 neurons are evaluated below.
This is the topology that achieved the best results in the limited pre-study presented here. The training was
terminated due to early-stopping after 292 epochs and the performance measure, i.e. the mean square error
(MSE), for this network is 0.0069. The training and validation error curves are shown in Figure 4. The final
evaluation of performance is based on the completely unknown test data set of 90000 additional simulation
results. The correlation between sound pressure prediction by the trained network and the reference values
according to FEM are shown in Figure 6 (real part) and Figure 7 (imaginary part), respectively. Also plotted
are the histograms of the relative prediction errors, each in comparison to the analytical model according to
Allard et al. Even if there are still deviations from the reference results of the FEM simulations in some cases,
a clear improvement of the calculation of the sound field over finite absorber samples is clearly visible. To
make the training results more descriptive with respect to acoustic practice, Figure 5. shows a simulated sweep
measurement of the total sound pressure at a receiver position at a height of 5 cm centered over a small absorber
sample (L x W x H = 30 cm x 50 cm x 20 cm).

4 Discussion and Outlook

In this work, the training of artificial neural networks for modeling the edge effect over finite porous absorber
samples was presented. At least for certain applications (e.g. inverse material characterization methods) and
within the previously chosen parameter and modeling limits, neural network based sound field modeling has
the potential to completely replace less suitable analytical models on the one hand or computationally much
more complex numerical simulations on the other hand. The effort required to generate the corresponding
training data is justified, especially with regard to problems that require a large number of model evaluations
(parameter studies, iterative procedures, etc.). Note that the specification of the 5 material parameters of the
JCA model as features is simply due to the fact that the networks trained here are to be used first in the context
of an approach for the inverse estimation of exactly these frequency-independent porous material parameters.
Instead, it is equally possible to choose the general parameters of the fluid medium (e.g., ρ

m
(ω) and km(ω))

as input features of the neural networks, which does not change the conceptual approach described in this

7



Figure 5: Sound pressure level (showing pronounced edge effect) evaluated at a height of zr = 0.05 m centered
above a porous material sample (0.3 m x 0.5 m x 0.2 m). Comparison between the exact FEM results, the

analytical model of infinite material extension and the neural network prediction.

paper. Both variants of implementation will be studied in detail as part of the following work. Approaches to
further improve the performance of the networks are to investigate other network topologies and complexities,
to increase the number of training data used, and to penalize deviations from the target values for smaller flow
resistivity values more strongly during training by using appropriate error weights.
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Figure 6: Upper row: Comparison of the sound pressure predictions (real part) of the Allard et. al model and
the four-layer neural network (70x50x30 hidden neurons), each plotted against the corresponding FEM values.

Bottom row: comparison of histograms of the two error distributions with logarithmically scaled ordinate.
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Figure 7: Upper row: Comparison of the sound pressure predictions (real part) of the Allard et. al model and
the four-layer neural network (70x50x30 hidden neurons), each plotted against the corresponding FEM values.

Bottom row: comparison of histograms of the two error distributions with logarithmically scaled ordinate.
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