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Abstract 

Fibreglass composite plates are used for applications ranging from aerospace and automotive to 
construction industry. The classical theory of the plate vibration has been used to determine the 
deflection of the composite plate at difference locations on the plate surface. 3D deformations of plate 
for different boundary conditions have been computed at different frequencies. It has been shown that 
clamping the plate at four edges delayed first resonance of the plate by 15 Hz and second resonance of 
the plate by 30 Hz.   
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1. Introduction  

The vibrations of the structures that are made of isotropic and homogeneous materials has been an important 
subject in the study of noise control, in the aeronautical industry, in the study of fluid-solid interactions and 
in construction industry for double leaf partitions as building structures. When a sound wave impinges on a 
structure, a part of acoustic energy is reflected back into source medium, a part is dissipated in the structure 
and the rest of acoustic energy is transmitted through the structure into the other medium. In building 
acoustics applications, the reflected acoustic energy builds up a reverberant sound field in the source room 
that in turn vibrates the walls. The vibrations in the common walls radiate sound directly into the receiver 
room. The vibrations in the other walls of the source room travel as structure-borne noise to the all walls of 
the receiving room and radiate sound into the receiver room. 

Complex structures may be modelled as systems that are made of individual plate like elements. The theory 
of vibration of porous and non-porous structures is a well-known branch of engineering mechanics. Previous 
works on classical theory of the plate [1-7] has investigated vibration of isotropic and anisotropic plates for 
various boundary conditions. The vibration of porous plates can be described using two coupled equations 
[8], which are based on Biot’s stress-strain relations [9, 10] and which introduce two types of compressional 
waves (‘fast’ and ‘slow’) and a shear wave. They assumed that the thickness of plate is smaller than the 
wavelength and that interaction can take place between the slow waves and the bending waves in the plate. 
They also ignored the amplitude of the fast wave. Galerkin’s variational techniques were applied to porous 
plates [11-13], taking into account a classical set of trial functions obtained from the linear combination of 
trigonometric and hyperbolic functions for various boundary conditions.  The effects of fluid loading on the 
vibration of rectangular porous plates and on their radiated sound power was investigated by including an 
extra term into the equations for the porous plate vibration, corresponding to the additional external force 
acting on the plate [14]. Previous study on low frequency vibration of porous plates [15] has demonstrated 
the existence of low frequency absorption coefficient resonance in configurations consisting of clamped 
poroelastic plates with an air cavity between the plates and a rigid termination. An analytical model that 
takes into account the effect of perforations and the effect of the flexural vibrations in the plates has been 
formulated and used to calculate the insertion loss in the absence, and in the presence of air flow [16, 17].  
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Recently, Aygun [18] has studied composite recycled glass bead panels in order to assess their suitability for 
civil engineering application, especially in noisy urban environments, either as structural panel components 
that also offer acoustic insulation or as dedicated noise barriers for outdoor applications.  The aim of this 
paper is to investigate the vibrational and acoustical parameters of thin composite plates that are made of 
fiberglass, which are used for applications ranging from aerospace and automotive to construction industry. 
To author’s best knowledge, vibroacoustical properties of composite plate have been reported in this paper 
for first time. The deflection of composite plate has been predicted at difference locations on the plate using 
the classical theory of the vibrating plate for simply supported and clamped boundary conditions. 
Computational simulations have been carried out to determine deformations of the plate in 3D for different 
frequency ranges for simply supported and clamped boundary conditions.  Furthermore, the radiation 
impedance matrix has been predicted for simply supported boundary condition by using equations for 
eigenfunctions and Green’s function without interpolation, convergence and without reducing the quadruple 
integral into a double integral.    

2. Theory of plate vibration 

When a flat plate is subjected to a transverse, time dependent force density F(x, y, t), the transverse 
deflection of the plate is governed by the fourth order differential equation. The transverse vibration under 
free wave conditions stems entirely from inertial loading. A thin, baffled square plate of dimension a x b 
(along aces x and y, respectively) and uniform thickness h is considered in this study. The plate displacement 
induced by bending waves is in the direction of z axis and is function of time. The geometry of the plate is 
shown in Figure 1.  

 

                        Figure 1: The geometry of a baffled plate. 

The flexural wave equation for composite thin plate can be given by;   
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where sw  is the transverse plate deflection, 
..

sw  is the second order derivative of the plate deflection, 

)1(12/ 23 vEhD −=  is the flexural rigidity, ( )224 ∇∇=∇  and 22222 yx ∂∂+∂∂=∇  in the system of 

coordinates (x, y) with x and y parallel to the plate sides of length a and b respectively, sρ is the mass 
density, E is the Young’s modulus of the plate, and v  is the Poisson ratio of the plate.  

The plate deflection sw  for harmonic wave motion is expressed in the form as shown below; 
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where mnA  is the unknown coefficients to be determined, m, n = 0, 1, 2, 3 ….. , and nm YX and  are the 
beam functions in x and y direction respectively.  

The beam functions have been selected to satisfy different boundary conditions at the edges of the plate. An 
appropriate trigonometric function for vibrating beams has been used for nm YX and  different boundary 
conditions. For simply supported plates, the beam functions are 

),/sin()( axmxX m π= and )/sin()( bynyYn π=  which should satisfy the equations of equilibrium. The 

boundary conditions for simply supported edges of the plate are axx
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. The shape of each mode of vibration of plate can be determined 

from Equation (2) by knowing the relative values of mnA  and the values of nm YX and functions. In the static 
and dynamic analysis, the excitation function F(x, y) has been expanded into double infinite sine series of 
variables x and y for each value of the couple (m, n) by using the equation below; 
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where mnF  are the expansion coefficients.  

By inserting (2) and (3) into (1), we can obtain that; 

 ( )hDFA smnmn ρω 24/ −∇=                                                                 (4) 

where ω  is the angular frequency of the plate. 

Trigonometric functions have been used to expand the plate deflection for clamped non-porous composite 
plate. These functions are called beam functions and are given by; 

)/(sin)/(sinh)/(cos)/(cosh)( 4321 axaBaxaBaxaBaxaBxX mmmmmmmmm +++=                        (5-a) 

)/(sin)/(sinh)/(cos)/(cosh)( 4321 bybCbybCbybCbybCyY nnnnnnnnn +++=                         (5-b) 

where ma and nb are the frequency parameters corresponding to the mth and nth normal modes of 
characteristic equation.  

The constants 4321 ,,, nnnn CCCC 4321 ,,,, mmmm BandBBB have been determined from the boundary 
conditions at four edges of the plate, and allow any condition involving simply supported, and clamped 
edges. A baffled square composite plate has been excited by a point force F(x, y, t) which is applied at x0 = 
0.25 m, and y0 = 0.25 m from a corner of the plate. The responses have been calculated at the locations given 
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by x = 0.25 m and y = 0.25 m and also at x = 0.15 m and y = 0.15 m respectively. The magnitude of the force 
used to vibrate the plate was 1 N. The vibration response of the plate has been calculated in the 0-1000 Hz 
frequency range. The properties of the plate used for numerical analysis are given in the Table 1.   

Table 1: Properties of thin composite plate 

Length 
(m) 

Width 
(m) 

Thickness 
(m) 

Density 
(kg/m3) 

Young’s 
Modulus (Pa) 

Loss 
Factor 

Poisson 
Ratio 

0.50 0.50 0.0025 1600 7.489 x 109 0.03 0.2 

The plate deflection have been predicted for values of (m, n) up to 30. The vibration responses of a simply 
supported and clamped composite plate plotted against frequency are shown in Figures 2. The responses 
observed are kind of exponentially decaying sinusoidal wave signal. The first and second resonance 
frequencies has been observed at 18 Hz and 91 Hz for simply supported plate respectively. In case of 
clamped plate, the first and second resonance frequencies has been observed at 33 Hz and 121 Hz 
respectively. It can be seen that clamping the plate at four edges delayed first resonance of the plate by 15 
Hz and second resonance of the plate by 30 Hz while it reduces the amplitude of the plate deflection 
throughout the frequency range. The deflections of the composite plate has been also calculated at a point 
where x = 0.15 m and y = 0.15 m as shown in Figure 3. It shows that only amplitude of resonances 
changes at lower frequencies while at higher frequencies resonance and amplitude change.   
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Figure 2: Deflection of simply supported and clamped fibreglass plate at x = 0.25m and y = 0.25m 
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Figure 3: Deflection of simply supported and clamped fibreglass plate at x = 0.15 m and y = 0.15 m 

3D deformations of thin composite plate for simply supported boundary condition are computed using a 
MATLAB code,  at centre of the plate for 100 Hz, 500 Hz and 1 kHz, and their corresponding results are 
shown in Figures 4 a, b, and c respectively. 3D deformations for clamped composite plate are shown in 
Figure 4. Sixteen modes in each direction have been used to compute the 3D deformations of the composite 
plate. Vertical line at the centre of the plate shows the location where the force is applied to the plate. This 
clearly shows that different modal deformations at 100 Hz, 500 Hz and 1 kHz frequencies can be observed 
for different boundary conditions. 3D deformation in Figure 3a corresponds to first resonance frequency 
while the visualisation of the deformation in Figure 4a corresponds to first and second resonances. When the 
frequencies increase, the number of the plate resonances increase too.  
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Figure 4: 3D deformation of fibreglass composite simply supported plate at a) 100 Hz, b) 500 Hz, and c) 1 
kHz.  

(a) (b) 
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Figure 5: 3D deformation of fibreglass composite clamped plate at a) 100 Hz, b) 500 Hz, and c) 1 kHz 
respectively.  

 

3. Radiation impedance matrix  

The coefficients of the acoustic radiation impedance of a baffled plate are given by equation below: 

 ∫∫ ∫∫ ′′′′′=
S

pq
S

mnmnpq SddSyxyxzyxGyxjZ )),()0,,;,,(),( ψψρω                      (6) 

where mnpqZ  is known as the acoustic radiation impedance between the normal modes (m, n) and (p, q), 

)0,,;,,( yxzyxG ′′ is the Green function defined, ρ is the fluid density, and  ),( yxpq ′′ψ  is the 
eigenfunctions in the case of the simply supported boundary condition given by Equation (7); 

 )sin()sin(),(
b
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a
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The acoustic radiation impedance shows the influences of the sound pressure in the (m, n) mode on the plate 
system vibrating in the (p, q) mode. A Gaussian quadrature scheme with 16 terms of functions in each 
direction (x, y) has been used to compute the radiation impedance matrix. When the variables xx ′=  
and yy ′= , for which )0,,;,,( yxzyxG ′′ go to infinity, care has been taken to avoid singularity. The 
singularity at the origin has been avoided by taking G (0, 0) = 0. In this work the radiation impedance matrix 
has been calculated by using direct numerical integration of Equation (6) without interpolation, convergence 
and reducing the quadruple integral into a double integral. The direct and cross coupling terms of the 
radiation impedance matrix are normalized by the characteristic impedance ( 00cρ ), where 0ρ is the air 

density and 0c is the sound speed in the air.  

The direct terms ( 00/ cZmnmn ρ ) of the radiation impedance matrix are shown in Figure 6. When higher values 
of (m, n) are used in the calculations, the radiation impedance matrix is equal to zero at low frequency. The 
cross coupling terms 00/ cZ mnpq ρ  are shown in Figures 7. The values of m, n, p, and q vary between 0 and 
N. These figures show that the predicted radiation impedance matrix exhibits a smooth variation in terms of 
frequency. The real part of the radiation impedance matrix is the radiation resistance and expresses the 
radiation damping of the plate structure while the imaginary part of the radiation impedance matrix is the 
radiation reactance and expresses the added mass of gas on its structure. 

(a) (b) (c) 
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Figure 6: Radiation impedance matrix, direct terms.  
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Figure 7: Cross coupling terms of the real part of the radiation impedance matrix 
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4. Conclusion  

An investigation of the vibrational and acoustical parameters of thin composite plate that is made of 
fibreglass has been carried out. The deflection of the composite plate has been computed using the classical 
theory of the vibrating plate for simply supported and clamped boundary conditions at difference locations 
on the plate surface. Computational simulations have been carried out to determine deformations of the plate 
in 3D and their corresponding square velocities for different frequency ranges for simply supported and 
clamped boundary conditions. It has been shown that clamping the plate at four edges delayed first resonance 
of the plate by 15 Hz and second resonance of the plate by 30 Hz. The radiation impedance matrix has been 
calculated by using basic equation without interpolation, convergence and without reducing the quadruple 
integral into a double integral. The direct and cross coupling terms of the radiation impedance matrix have 
been normalized using characteristic impedance. The real part of the radiation impedance matrix is the 
radiation resistance and expresses the radiation damping of the plate structure. The imaginary part of the 
radiation impedance matrix that was not shown in the manuscript is the sound radiation reactance and 
expresses the added mass of gas on the plate structure. 
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