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Abstract 

 
As the consumption change of combustion engine cars (ICEV) to electric cars (EV) continues, there are audible changes 

perceived inside the car due to engine components alterations. Thus, an objective evaluation of sound quality study is 

necessary to uncover mentioned audible shift. EV Sound stimuli from Swart et al and an added ICEV sound stimuli is 

used to evaluate its psychoacoustics values using a MATLAB-based program, PsySound3. Extracted value was 

investigated with statistical methods to evaluate psychoacoustics characteristics of each sample such as loudness, 

sharpness, roughness, tau-e, and peak frequency. ANOVA and Tukey test verified that HEV and PEV have smaller values 

in loudness and tau-e compared to ICEV and generated/enhanced EV. ICEV has higher values in loudness compared to 

HEV, PEV, and generated/enhanced EV. While generated/enhanced EV has extreme value in all parameters. During the 

process, probable connection between parameters were established as well. Similar sound stimuli patterns of Tukey test 

result were found in loudness, tau-e and peak frequency. Comparable trendlines were also discovered between sharpness, 

roughness, and tau-e. 
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1 Introduction 

Electric vehicle (EV) have different components from internal combustion engine vehicle (ICEV). In ICEV, 

the driving force comes from the combustion of gasoline and air that moves the piston. This process involves 

various mechanical components and combustion that continue as long as the car is moving. Whereas EV, the 

driving force is obtained from electricity by the battery, moves through the inverter, causes an electromagnetic 

process that drives the motor. 

The disappearance of ICEV combustion sound and vibration engine on EV, not only causes sound pressure 

level (SPL) reduction inside the cabin but also leads to disturbing noises due to masking loss which is usually 

given by combustion engine loud sound [1]. In addition, EV sound consists of more tonal character due to its 

high-frequency components. As a result, EV sound can be perceived as annoying and unpleasant by the user 

[2]. 

The reduction of SPL in EV’s cabin makes this parameter no longer appropriate to use in determining EV 

sound. Psychoacoustic parameters related to sound quality (SQ) are considered better to determine the 

appropriate EV sound [3]. Research for indoor EV sound using SQ method has been carried out by Swart et al 

[4], Qian et al [5], and other researchers, but this research will focus on psychoacoustic parameters. 

As one of the objective judgements of sound quality, psychoacoustics parameters deemed appropriate to 

measure noise. These parameters mimics the complex psychoacoustical features of human ear and considers 

psychological aspects of men [6] to value the subjectivity in perceiving sounds. There are various parameters 

in psychoacoustics, and numerous models has been proposed [7],[8],[9],[10],[11]. However, all models have 
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a common idea in their algorithms: they weight and filter the sound as human ears do before calculation. 

Therefore, the final equation for psychoacoustics parameters usually sums up the calculated value across all 

banked noise, usually in critical band e.g., Bark scale, Erb scale. 

The main purpose in this study is to evaluate the characteristics of EV and ICEV sound stimuli expressed in 

psychoacoustics parameters. The extracted value of each parameter furthermore becomes the traits of each 

sound stimuli, allowing comparisons to be done. This comparison was executed with simple statistical analysis, 

performed generally and by pairs of sound stimuli across the parameters. Through the process, patterns of 

sound stimuli sequence also emerged, establishing connection between parameters in this study. 

 

2 Methods 

2.1 Sound stimuli 

This research uses sound recording from data article “Electric vehicle sound stimuli data and enhancements” 

by Swart et al [12]. Six cabin interior sounds of PEV and HEV were recorded on the freeway with WOT (Wide 

Open Throttle) acceleration from 0 km/h to 120 km/h in the shortest time possible. Sounds were recorded from 

the driver's seat using Squadriga I data acquisition system from Head Acoustics and a BHS I binaural headset, 

using a sample rate of 44.1 kHz. There are 12 interior cabin EV sound recordings in total, including sounds 

samples that are generated/enhanced. As a comparison from Swart et al, a 2013 Toyota New Avanza ICEV 

cabin interior sound recording was also taken using phone recorder. ICEV specification and recording 

condition can be seen on Table 1. 

Level of all sounds sample was then normalized using Audacity and smoothed at the end of the sample. Format 

conversion was also done from .mp3 to .wav. 

 

Table 1 – ICEV specification and recording condition 

Sound 

Sample 

Model Year Propulsion Drive System Tyre type Capacity Recording 

condition 

A Toyota 

New 

Avanza 

2013 ICEV Gear box with 

multiple stages 

Bridgestone 

B250 

1296 cc Cloudy, 

moist 

 

Table 2 – Selected sound stimuli 

Sound Source Type Description 

R Renault ZOE PEV WOT interior sound signaturea 

V Volkswagen e-Up! 

interior 

PEV WOT interior sound signaturea 

P Porsche Panamera 

Hybrid interior 

HEV WOT interior sound signaturea 

B BMW i3 sound 

concept 

Generated/en

hanced EV 

Enhanced sound signature concepta 

E Motor orders Generated/en

hanced EV 

Generated stimulus using data ordersa 

S Shepard’s Tone Generated/en

hanced EV 

Shepard-Risset Glissando with 110 Hz 

fundamental frequencya 

A Toyota New Avanza ICEV WOT interior sound signature 
a refer to Swart data article [12] for full details 
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2.2 Characteristics analysis 

The sound samples’ psychoacoustics parameters were extracted using an open-source, MATLAB-based 

program called Psysound3 [13]. The program provides analysis of sound files in different formats, using broad 

selection of audio analysers modules. Calibration after input used a 1 kHz sine wave generated in Audacity, 

since gain sensitivity is important and influences the output psychoacoustics parameter values. The main output 

formats of the analysers are time-series, spectrum objects, and time-spectrum objects [14]. All formats output 

data can be extracted to .csv for further analysis. 

Five psychoacoustics parameters are observed to discover the characteristics difference between sound stimuli: 

loudness, sharpness, roughness, 𝜏𝑒, and peak frequency. Three former parameters are selected based on their 

common use in identifying car interior and automobile noise. Two others, 𝜏𝑒 and peak frequency are the 

uncommon ones but useful in identifying pitch and related preferred condition for the temporal factors of a 

sound field[15]. Furthermore, these five selected parameters are frequently used to calculate sensory 

pleasantness, rating of preference, and annoyance metric [4], [16], [17], [9]. Each parameter is calculated using 

provided algorithm. Loudness of each sound stimuli is calculated using Glasberg and Moore’s time-varying 

loudness model [18], meanwhile sharpness is based on Zwicker’s calculation method [7], and roughness is 

based on Daniel dan Weber’s model [19]. Both 𝜏𝑒 and peak frequency are the independent factors extracted 

from each time frame of auto-correlation function (ACF), with their definitions provided by Ando [20], [21].  

The elimination of existing sound stimuli was done subsequently to reduce the number of samples. The process 

is done by selecting sound stimuli with maximum and minimum value of each psychoacoustics parameters. 

Following this manner, the process eliminated half of the sound samples, and the other selected half were used 

for further statistics analysis. The selected few are listed in Error! Reference source not found.. 

 

 

3 Result and Discussion 

3.1 ANOVA Test 

Psychoacoustic results on loudness, sharpness, roughness, tau-e, and peak frequency were tested by ANOVA 

to determine whether there are differences on each sound sample character in each psychoacoustic parameter. 

P-value of ANOVA test can be seen in Table 3. 

ANOVA p-value for all psychoacoustic parameters is lower than 0.05, so there is a statistically significant 

difference between at least a pair of sound stimuli for each psychoacoustic parameter.  

 

Table 3  – P-value for ANOVA test of psychoacoustic parameter 

Psychoacoustic Parameter P-value 

Loudness 0.000 

Roughness 0.000 

Sharpness 0.000 

Tau-e 0.000 

Peak frequency 0.000 
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3.2 Discussion for Each Psychoacoustic Parameter 

3.2.1 Loudness 

Sound samples in the same colour box on error bar are sound pairs that are statistically insignificant in Tukey 

test. For loudness in Figure 1, it can be said that each sound sample has a different loudness character. This is 

indicated by the absence of sound samples that are in the same colour box. 

 

Figure 1 – Mean loudness for each sound sample 

The sound sample with the highest loudness is ICEV (sound sample A). The reason is expected to be the 

dominant combustion engine components that were heard. Thus, an electric car that does not have a 

combustion engine component automatically has a lower loudness level. Sample P, which is an HEV car 

having the lowest loudness value, followed by two PEV car sound samples. Although HEV has a combustion 

motor component, HEV has a lower loudness level. This can happen because the HEV sound sample is a plug-

in hybrid electric car, so the combustion engine component was not active during the sample measurement. 

3.2.2 Sharpness 

In Figure 2, sound S has the highest mean sharpness, and sound E has the lowest mean sharpness. Sharpness 

represents the ratio of high and low-frequency components in a signal, and sharpness can be reduced if there 

are additional low-frequency components. It can be seen Figure 3, sound E is a sound generated by MATLAB, 

as an approach to the sound of motor with gas input on combustion engine. Therefore, there is some addition 

of low-frequency components as shown in Figure 3(a), which results in a lower mean sharpness. Meanwhile, 

the presence of high-frequency components that consistently increase over time (Figure 3(b)) on sound S 

causes a higher sharpness. 

 

Figure 2 – Mean sharpness for each sound sample 
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  (a) (b) 

Figure 3 – Spectrogram of (a) EV Motor Orders and (b) Shepard’s Tone [12]      

Sound samples inside the blue box (Figure 2) that is V, R, A, and B are statistically insignificant. V and R 

sound samples has the same position. This can be further analyzed using frequency component of each sample 

in Figure 4 (a)-(d), which can be obtained through the spectrum plot in Audacity. It can be seen that these 

four samples have approximately the same high and low-frequency components, especially sound V 

(Volkswagen) and R (Renault) because both stimuli are PEV sound samples. 

 

 

 

 
 

(a) (b) 

 

 

 
 ( c )     (d) 

Figure 4 – Frequency components of sound stimuli (a) Volkswagen e-Up! (b) Renault ZOE (c) Toyota New 

Avanza (d) Enhanced BMW i3 
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3.2.3 Tau-e 

 

Figure 5 – Mean tau-e of selected sound samples 

There are different patterns of insignificant different for 𝜏𝑒 compared to the other parameters discussed above. 

This difference between sound samples can be divided into four parts, as the coloured boxes suggest in Figure 

5. This visual data representation of 𝜏𝑒 for each sound sample includes four coloured boxes which indicate the 

Tukey test results. It is important to note that the presented error bar is not of high accuracy to represent 

insignificance, resulting in inconsistencies between the graph and boxes, and thus is utilized only as data view 

assistance. 

The green box, indicates the insignificant difference between sample V, P, R, and B. This data shows that PEV 

and HEV sound samples have broad bandwidth, since small value of 𝜏𝑒 represent noise with similar 

characteristics to white noise. This characteristic is the immediate effect to aerodynamics noise dominance in 

PEV and HEV. On the contrary, even though aerodynamic noise is undeniably present, combustion engine 

noise of ICEV sound sample is more prominent. Therefore, as indicated in yellow box, sample A, S, P, and B 

has statistically insignificant difference. Furthermore, it is evident that both sample R and B has a wide range 

of 𝜏𝑒 value, as shown in blue box. This implies both wideband noise and tonal noise is present in samples 

mentioned. Regardless, sample S and E have the most tonal characteristics of all samples, as shown in red box. 

In [21], Ando states that 𝜏𝑒 as a correlation feature partially predicts loudness percept. This statement is also 

proven with comparing Figure 1 and Figure 5. Upon comparison, both data gives the same trendline, with 

PEV and HEV sound samples having lower value than ICEV and generated/enhanced EV sound samples in 

both parameters: loudness and 𝜏𝑒. Therefore, in this study, 𝜏𝑒 and loudness relates unidirectionally.  

Another connection is also evident by comparing sharpness and 𝜏𝑒 Tukey test results. From sample V to S, 

both parameters give a unidirectional tendency, except sample E. Additional analysis uncovers that tonality 

characteristic of noise defines sharpness. This increasing value of sharpness is detected in noises with 

bandwidth smaller than a critical band [7]. In this study, the high frequency tonal component is becoming more 

evident from sample V to S. Meanwhile, sample E as a generated sound sample has lower order addition, 

meaning the sample also generates a low frequency tonal noise. This addition therefore fathomed to be the 

reason of sample E’s small sharpness value.  
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3.2.4 Peak frequency 

 

Figure 6 – Mean peak frequency of selected sound samples 

Based on Figure 6, peak frequency value of each sample has conspicuous difference, particularly sample S 

and B, as yellow and red boxes suggest. Sample S - Shepard’s glissando tone – naturally consisted of high 

frequencies. Sample B, as an enhanced BMW i3 cabin sound signature, underwent the addition of E7th harmony 

as part of its enhanced process. This addition may be the reason of its high peak frequency value. Nevertheless, 

the other samples are proven in having statistically insignificant difference while also possess low peak 

frequency component, as indicated in the green box.  It is also evident that PEV, HEV, and ICEV sound stimuli 

are found to have similarities in peak frequency value. ICEV low frequency components are explicitly from 

its combustion engine. For HEV and PEV, [12] suggests tire and wind noises as its source.   

Upon comparison with other parameters, similar patterns of sound stimuli sequence were found between 

loudness and peak frequency. Sample V, P, and R as HEV and PEV sound stimuli have small values in general, 

while sample S and B inhibited higher values. The contradictory in this pattern is sample A, which should have 

a lower value in loudness based on its value in peak frequency. After going through some supplementary 

analysis, researchers contend to the level domain of sound stimuli. A noise loudness value is affected by two 

components: its level and frequency contents [7]. Speaking in frequency domain, sample S and B should have 

higher loudness value than sample A, since both samples inhibited higher and more sensitive region of 

frequency to human ear. But in level domain, since normalization in Audacity only applies to highest amplitude 

peak in each sound stimuli, overall level of sample A is higher than sample S and B due to the whirring and 

booming sound of combustion engine in WOT state. 

 

3.2.5 Roughness 

 

Figure 7 – Mean roughness of selected sound samples 

In case of roughness, all selected sound samples are divided into two groups, shown in Figure 7. All samples 

– except sample E – are members of the first group (green box) which have statistically insignificant difference 

in mean roughness value with each other, proven with Tukey test. That is, with lower roughness value than 
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sample E, which constructs the second group along with sample R in yellow box. The result shows sample E 

has the highest and distinguished roughness value, while PEV and HEV sound samples has statistically equal 

roughness value with ICEV sound samples, even though their drive components are different. These outcomes 

are congruent with research by Swart [22], which states that sample E is characterized by initial roughness 

value, attributed to the addition of frequency modulation. It is also important to note that in his research, Swart 

mentions that there is a possible counteraction between roughness and sharpness. In this study, the mentioned 

possibility evinces in sample E, but is elusive in other samples. Comparison between roughness and 𝜏𝑒 is also 

worth to point out, since sample E and sample V both have maximum and minimum value respectively in 

mentioned parameters. This outcome denotes probable connection, that tonality increases roughness value. Yet 

not all results correspond to this probability, since modulation in amplitude, frequency, or both is also needed 

to take account of. 

 

4 Conclusions 

Seven cabin sound stimuli of EV and ICEV were evaluated objectively using five psychoacoustic parameters. 

The time-series data of each parameter then analysed statistically using ANOVA test and Tukey test. The 

former test revealed there were statistically significant difference between at least two sound stimuli in each 

parameter. The latter, however, showed different insignificant combination across the parameters. HEV and 

PEV sound stimuli were found to have smaller values in loudness and tau-e parameters compared to other 

sound stimuli. ICEV sound sample had notable high value in loudness due to its combustion components. 

Meanwhile, generated/enhanced EV sound stimuli had extreme values all over the parameters. Additional 

discovery was also found regarding the probable connection of parameters. Loudness was found to have 

connections with tau-e and peak frequency, while sharpness, tau-e, and roughness have probable connection 

between them. Similar studies of psychoacoustics parameters reveal corresponding results. However, even 

though some of these connections had been established, some others are not yet resolute. Further analysis is 

needed alongside subjective evaluation with more scrutiny to obtain promising results.  
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